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pillar. We consider a solution domain of infinite extent, implying no outer boundary conditions for the electric
field, and expand the field on analytic eigenmodes. In contrast to finite-sized simulation domains, this avoids the
issue of parasitic reflections from artificial boundaries. We compute the Purcell factor in a two-dimensional
micropillar and explore two discretization techniques for the continuous radiation modes. Specifically, an equi-
distant and a nonequidistant discretization are employed, and while both converge, only the nonequidistant dis-
cretization exhibits uniform convergence. These results demonstrate that the method leads to more accurate
results than existing simulation techniques and constitutes a promising basis for further work. © 2012 Optical
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1. INTRODUCTION
Quantum emitters embedded in optical microcavities, such as
photonic crystals and micropillars, constitute an important
platform for exploring a range of interesting physical phenom-
ena as well as realizing quantum information devices. This
includes a broad range of interesting features, including
enhanced light–matter interactions, quantum entanglement,
and single-photon emission [1]. The latter is intimately related
to the Purcell effect that describes the enhancement or inhibi-
tion of the spontaneous emission rate (SER) of an emitter
when positioned inside an optical cavity [2]. Enhancement
of the SER is vital in the development of efficient and reliable
single-photon sources in the scope of quantum information
technology [3].

To obtain the desired functionality in such devices, ac-
curate numerical modeling of the electromagnetic field is cru-
cial. Numerical methods based on spatial discretization such
as finite-difference time-domain (FDTD) [4] and the finite ele-
ment method (FEM) [5] are popular; however, the necessity of
discretizing the entire computational domain leads to huge
memory requirements for realistic device geometries. On the
other hand, modal methods such as the Fourier modal method
[6] and eigenmode expansion technique (EET) [7] are less
memory demanding, and in addition the approaches them-
selves provide a better insight into governing physical
mechanisms of interest. In this article, we formulate and de-
monstrate the application of the EET to a geometry without
outer boundary conditions, the so-called open geometry that
is commonly encountered in optics.

In modal methods, or rigorous coupled-wave analysis, the
electromagnetic fields are expanded on a complete and ortho-
normal set of basis functions. The set of basis functions can be
chosen as the set of eigenmodes supported by the optical en-
vironment under consideration, giving rise to the EET. These

eigenmodes can be determined using Fourier analysis or by
direct analytic determination of the eigenmodes. In a homo-
geneous medium, the eigenmodes are indeed plane waves,
but in more advanced structures, such as the micropillar to
be considered in this article, the complete set of eigenmodes
includes a finite number of guided modes and a continuum of
radiation modes.

A common issue for most of the suggested simulation tech-
niques is that practical implementation enforces a finite-sized
solution domain. In its simplest form, this implies the con-
straint that the field must vanish at the boundaries of the
solution domain, which inevitably produces parasitic reflec-
tions at these metal-like boundaries [8]. As a means to reduce
these effects, absorbing boundaries, the so-called perfectly
matched layers (PMLs), were introduced [9]. The use of ana-
lytic eigenmodes in combination with PML was investigated
by Bienstman and Baets [7,8], and numerically stable results
using this technique were demonstrated [10]. However, the
use of PMLs requires a set of parameters to be determined
that define the boundary region, and convergence of the elec-
tric field upon adjustment of these parameters, toward that of
an open geometry, is not guaranteed [11]. Thus, even PML
does not fully eliminate the parasitic perturbations of the
fields [12], and this inherent deficiency of finite-sized simula-
tion domains motivates the introduction of an open geometry
of infinite extent.

The open geometry has been treated by expansion of the
eigenmodes on a Fourier–Bessel basis [13]. On the other hand,
expansions on analytical eigenmodes are applied in [14],
where an open geometry with radiation from a waveguide into
free space is treated. There, an integral equation for the field
at the interface between the waveguide and free space is
derived and solved by a perturbative approach. First- and
second-order solutions are presented, but the approximate
solution procedure in practice limits the index contrasts that

Rosenkrantz de Lasson et al. Vol. 29, No. 7 / July 2012 / J. Opt. Soc. Am. A 1237

1084-7529/12/071237-10$15.00/0 © 2012 Optical Society of America

I ”Volume Integral Equations and the
Electromagnetic Green’s Tensor”

I ”Electromagnetic Scattering in
Micro- and Nanostructured
Materials”

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

Downloaded 22 Oct 2012 to 192.38.90.11. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

Three-dimensional integral equation approach to light
scattering, extinction cross sections, local density

of states, and quasi-normal modes

Jakob Rosenkrantz de Lasson,* Jesper Mørk, and Philip Trøst Kristensen

DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343,
Kongens Lyngby DK-2800, Denmark

*Corresponding author: jakob@jakobrdl.dk

Received March 12, 2013; revised April 23, 2013; accepted April 24, 2013;
posted May 21, 2013 (Doc. ID 186855); published June 27, 2013

We present a numerical formalism for solving the Lippmann–Schwinger equation for the electric field in three
dimensions. The formalismmay be applied to scatterers of different shapes and embedded in different background
media, and we develop it in detail for the specific case of spherical scatterers in a homogeneous background
medium. In addition, we show how several physically important quantities may readily be calculated with
the formalism. These quantities include the extinction cross section, the total Green’s tensor, the projected local
density of states, and the Purcell factor as well as the quasi-normal modes of leaky resonators with the associated
resonance frequencies and quality factors. We demonstrate the calculations for the well-known plasmonic dimer
consisting of two silver nanoparticles and thus illustrate the versatility of the formalism for use in modeling of
advanced nanophotonic devices. © 2013 Optical Society of America
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1. INTRODUCTION
Realization of optical devices based on optical micro or
nanostructures such as photonic crystals [1–3] or plasmonic
nanoparticles [4–6] rely on a prolific interplay between
advanced fabrication techniques and accurate numerical
methods. The latter paves the way for the design of advanced
optical functionalities as well as systematic studies and in-
depth understanding of the physical mechanisms at play.
Additionally, numerical modeling serves as an indispensable
tool in the interpretation of experimental results, and the
study and development of numerical modeling methods there-
fore remain an important and integral part of modern nano-
photonics research. Propagation of light, in the form of
electromagnetic fields, is governed by Maxwell’s equations,
and in spite of being known for more than a century, these
equations remain very difficult to solve and display rich
behavior. Analytical solutions are available only for a limited
number of geometries, and numerical solvers are thus indis-
pensable in the design of practical devices. Each numerical
scheme has advantages and limitations, as analyzed, for
example, with photonic-crystal-based vertical-cavity surface-
emitting lasers as benchmark structures using four different
methods in [7]. The most prominent advantages of the integral
equation approach that we present in this paper are versatility
in the form of easy access to figures of merit and high accu-
racy with a built-in error measure.

The most popular numerical methods in the field of
nanophotonics are the finite-difference time-domain (FDTD)
method [8] and the finite element method (FEM) [9], which
are both based on spatial discretization ofMaxwell’s equations.
FDTD uses a rectangular grid and a simple time-stepping

procedure to evolve the fields in time,whereasFEMuses anon-
uniform triangular meshing, which can more easily adapt to
curved surfaces, and is most often used for frequency-domain
problems. As a powerful hybrid approach, discontinuous
Galerkin methods use a variant of FEM based on nonoverlap-
ping basis functions, leading to improved performance in time-
domain calculations [10]. Thesemethods can easily be adapted
to treat arbitrary structures, but the necessity to discretize the
entire spacemay in practice lead to large requirements in terms
of memory and computational power, in particular for three-
dimensional (3D) problems. Alternatives includemodal expan-
sion techniques such as the Fourier modal method [11] and the
Rayleigh multipole method [12], in which the fields are ex-
panded on a chosen set of basis functions, and the electromag-
netic boundary conditions (BCs) are satisfied to determine the
expansion coefficients. In FDTD, FEM, and modal expansion
techniques the need to minimize parasitic reflections from the
calculation domain boundaries usually entails the introduction
of perfectlymatched layers (PMLs) [13]. Another class ofmeth-
ods is based on surfaceor volume integrals [14]. One advantage
of this procedure is that only bounded parts of space need to be
discretized, which prompts faster computations. Typical ap-
proaches employ expansions of the fields on orthonormal sets
of basis functions, and the integral equations are converted into
systems of linear equations for the expansion coefficients. A
popular choice of basis functions is the so-called pulse basis
functions [15] that form the foundation of the discrete dipole
approximation [16]. The simplicity of these piecewise-constant
basis functions allows a simple treatment of arbitrary geom-
etries, but their simplicity in turn leads to very large
systems of equations. More severely, the pulse basis functions
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1. INTRODUCTION
Realization of optical devices based on optical micro or
nanostructures such as photonic crystals [1–3] or plasmonic
nanoparticles [4–6] rely on a prolific interplay between
advanced fabrication techniques and accurate numerical
methods. The latter paves the way for the design of advanced
optical functionalities as well as systematic studies and in-
depth understanding of the physical mechanisms at play.
Additionally, numerical modeling serves as an indispensable
tool in the interpretation of experimental results, and the
study and development of numerical modeling methods there-
fore remain an important and integral part of modern nano-
photonics research. Propagation of light, in the form of
electromagnetic fields, is governed by Maxwell’s equations,
and in spite of being known for more than a century, these
equations remain very difficult to solve and display rich
behavior. Analytical solutions are available only for a limited
number of geometries, and numerical solvers are thus indis-
pensable in the design of practical devices. Each numerical
scheme has advantages and limitations, as analyzed, for
example, with photonic-crystal-based vertical-cavity surface-
emitting lasers as benchmark structures using four different
methods in [7]. The most prominent advantages of the integral
equation approach that we present in this paper are versatility
in the form of easy access to figures of merit and high accu-
racy with a built-in error measure.

The most popular numerical methods in the field of
nanophotonics are the finite-difference time-domain (FDTD)
method [8] and the finite element method (FEM) [9], which
are both based on spatial discretization ofMaxwell’s equations.
FDTD uses a rectangular grid and a simple time-stepping

procedure to evolve the fields in time,whereasFEMuses anon-
uniform triangular meshing, which can more easily adapt to
curved surfaces, and is most often used for frequency-domain
problems. As a powerful hybrid approach, discontinuous
Galerkin methods use a variant of FEM based on nonoverlap-
ping basis functions, leading to improved performance in time-
domain calculations [10]. Thesemethods can easily be adapted
to treat arbitrary structures, but the necessity to discretize the
entire spacemay in practice lead to large requirements in terms
of memory and computational power, in particular for three-
dimensional (3D) problems. Alternatives includemodal expan-
sion techniques such as the Fourier modal method [11] and the
Rayleigh multipole method [12], in which the fields are ex-
panded on a chosen set of basis functions, and the electromag-
netic boundary conditions (BCs) are satisfied to determine the
expansion coefficients. In FDTD, FEM, and modal expansion
techniques the need to minimize parasitic reflections from the
calculation domain boundaries usually entails the introduction
of perfectlymatched layers (PMLs) [13]. Another class ofmeth-
ods is based on surfaceor volume integrals [14]. One advantage
of this procedure is that only bounded parts of space need to be
discretized, which prompts faster computations. Typical ap-
proaches employ expansions of the fields on orthonormal sets
of basis functions, and the integral equations are converted into
systems of linear equations for the expansion coefficients. A
popular choice of basis functions is the so-called pulse basis
functions [15] that form the foundation of the discrete dipole
approximation [16]. The simplicity of these piecewise-constant
basis functions allows a simple treatment of arbitrary geom-
etries, but their simplicity in turn leads to very large
systems of equations. More severely, the pulse basis functions
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pillar. We consider a solution domain of infinite extent, implying no outer boundary conditions for the electric
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micropillar and explore two discretization techniques for the continuous radiation modes. Specifically, an equi-
distant and a nonequidistant discretization are employed, and while both converge, only the nonequidistant dis-
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results than existing simulation techniques and constitutes a promising basis for further work. © 2012 Optical
Society of America

OCIS codes: 000.3860, 050.1755, 230.5750, 230.7370, 290.0290.

1. INTRODUCTION
Quantum emitters embedded in optical microcavities, such as
photonic crystals and micropillars, constitute an important
platform for exploring a range of interesting physical phenom-
ena as well as realizing quantum information devices. This
includes a broad range of interesting features, including
enhanced light–matter interactions, quantum entanglement,
and single-photon emission [1]. The latter is intimately related
to the Purcell effect that describes the enhancement or inhibi-
tion of the spontaneous emission rate (SER) of an emitter
when positioned inside an optical cavity [2]. Enhancement
of the SER is vital in the development of efficient and reliable
single-photon sources in the scope of quantum information
technology [3].

To obtain the desired functionality in such devices, ac-
curate numerical modeling of the electromagnetic field is cru-
cial. Numerical methods based on spatial discretization such
as finite-difference time-domain (FDTD) [4] and the finite ele-
ment method (FEM) [5] are popular; however, the necessity of
discretizing the entire computational domain leads to huge
memory requirements for realistic device geometries. On the
other hand, modal methods such as the Fourier modal method
[6] and eigenmode expansion technique (EET) [7] are less
memory demanding, and in addition the approaches them-
selves provide a better insight into governing physical
mechanisms of interest. In this article, we formulate and de-
monstrate the application of the EET to a geometry without
outer boundary conditions, the so-called open geometry that
is commonly encountered in optics.

In modal methods, or rigorous coupled-wave analysis, the
electromagnetic fields are expanded on a complete and ortho-
normal set of basis functions. The set of basis functions can be
chosen as the set of eigenmodes supported by the optical en-
vironment under consideration, giving rise to the EET. These

eigenmodes can be determined using Fourier analysis or by
direct analytic determination of the eigenmodes. In a homo-
geneous medium, the eigenmodes are indeed plane waves,
but in more advanced structures, such as the micropillar to
be considered in this article, the complete set of eigenmodes
includes a finite number of guided modes and a continuum of
radiation modes.

A common issue for most of the suggested simulation tech-
niques is that practical implementation enforces a finite-sized
solution domain. In its simplest form, this implies the con-
straint that the field must vanish at the boundaries of the
solution domain, which inevitably produces parasitic reflec-
tions at these metal-like boundaries [8]. As a means to reduce
these effects, absorbing boundaries, the so-called perfectly
matched layers (PMLs), were introduced [9]. The use of ana-
lytic eigenmodes in combination with PML was investigated
by Bienstman and Baets [7,8], and numerically stable results
using this technique were demonstrated [10]. However, the
use of PMLs requires a set of parameters to be determined
that define the boundary region, and convergence of the elec-
tric field upon adjustment of these parameters, toward that of
an open geometry, is not guaranteed [11]. Thus, even PML
does not fully eliminate the parasitic perturbations of the
fields [12], and this inherent deficiency of finite-sized simula-
tion domains motivates the introduction of an open geometry
of infinite extent.

The open geometry has been treated by expansion of the
eigenmodes on a Fourier–Bessel basis [13]. On the other hand,
expansions on analytical eigenmodes are applied in [14],
where an open geometry with radiation from a waveguide into
free space is treated. There, an integral equation for the field
at the interface between the waveguide and free space is
derived and solved by a perturbative approach. First- and
second-order solutions are presented, but the approximate
solution procedure in practice limits the index contrasts that
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1. INTRODUCTION
Realization of optical devices based on optical micro or
nanostructures such as photonic crystals [1–3] or plasmonic
nanoparticles [4–6] rely on a prolific interplay between
advanced fabrication techniques and accurate numerical
methods. The latter paves the way for the design of advanced
optical functionalities as well as systematic studies and in-
depth understanding of the physical mechanisms at play.
Additionally, numerical modeling serves as an indispensable
tool in the interpretation of experimental results, and the
study and development of numerical modeling methods there-
fore remain an important and integral part of modern nano-
photonics research. Propagation of light, in the form of
electromagnetic fields, is governed by Maxwell’s equations,
and in spite of being known for more than a century, these
equations remain very difficult to solve and display rich
behavior. Analytical solutions are available only for a limited
number of geometries, and numerical solvers are thus indis-
pensable in the design of practical devices. Each numerical
scheme has advantages and limitations, as analyzed, for
example, with photonic-crystal-based vertical-cavity surface-
emitting lasers as benchmark structures using four different
methods in [7]. The most prominent advantages of the integral
equation approach that we present in this paper are versatility
in the form of easy access to figures of merit and high accu-
racy with a built-in error measure.

The most popular numerical methods in the field of
nanophotonics are the finite-difference time-domain (FDTD)
method [8] and the finite element method (FEM) [9], which
are both based on spatial discretization ofMaxwell’s equations.
FDTD uses a rectangular grid and a simple time-stepping

procedure to evolve the fields in time,whereasFEMuses anon-
uniform triangular meshing, which can more easily adapt to
curved surfaces, and is most often used for frequency-domain
problems. As a powerful hybrid approach, discontinuous
Galerkin methods use a variant of FEM based on nonoverlap-
ping basis functions, leading to improved performance in time-
domain calculations [10]. Thesemethods can easily be adapted
to treat arbitrary structures, but the necessity to discretize the
entire spacemay in practice lead to large requirements in terms
of memory and computational power, in particular for three-
dimensional (3D) problems. Alternatives includemodal expan-
sion techniques such as the Fourier modal method [11] and the
Rayleigh multipole method [12], in which the fields are ex-
panded on a chosen set of basis functions, and the electromag-
netic boundary conditions (BCs) are satisfied to determine the
expansion coefficients. In FDTD, FEM, and modal expansion
techniques the need to minimize parasitic reflections from the
calculation domain boundaries usually entails the introduction
of perfectlymatched layers (PMLs) [13]. Another class ofmeth-
ods is based on surfaceor volume integrals [14]. One advantage
of this procedure is that only bounded parts of space need to be
discretized, which prompts faster computations. Typical ap-
proaches employ expansions of the fields on orthonormal sets
of basis functions, and the integral equations are converted into
systems of linear equations for the expansion coefficients. A
popular choice of basis functions is the so-called pulse basis
functions [15] that form the foundation of the discrete dipole
approximation [16]. The simplicity of these piecewise-constant
basis functions allows a simple treatment of arbitrary geom-
etries, but their simplicity in turn leads to very large
systems of equations. More severely, the pulse basis functions
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