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Modeling of Electric Field and Purcell Factor

» Modeling of electric field and Purcell
factor in microstructured, dielectric cavity,
due to dipolar source.

» Purcell factor an important figure of merit
. _ Q 3)\3

for cavity, ), = ¥ 25,5

» Assuming unity quantum efficiency,
F, = P/Py, where P and P, are the
powers radiated in the cavity and in bulk,
respectively.[]

» The power is proportional to the real part
of the electric field, P o< Re(E).

Accurate modeling of electric field and
Purcell factor desired.

m L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), 1st ed.
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Modeling Schemes

Techniques for modeling electric field:
» FDTD, FEM. Memory requirements.

» Green's function/tensor.
» Modal expansion methods:

» Plane wave expansions.

» Eigenmode expansions. Physically intuitive.
» Metallic boundary conditions, periodic boundary conditions.
» PML boundary conditions.
> No (exterior) boundary conditions. Open geometry.
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Modeling Schemes

Techniques for modeling electric field:
>

>
» Eigenmode expansions. Physically intuitive.

» Metallic boundary conditions, periodic boundary conditions.
» PML boundary conditions.

> No (exterior) boundary conditions. Open geometry.

Parasitic reflections

Widely used. Artificial,
- ——— absorbing boundaries.
— - Dependence on
arbitrary parameters.

J. P. Hugonin and P. Lalanne, J. Opt.
Soc. Am. A 22, 1844-1849 (2005)
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Modeling Schemes

Techniques for modeling electric field:
>

>
» Eigenmode expansions. Physically intuitive.

» Metallic boundary conditions, periodic boundary conditions.
» PML boundary conditions.

> No (exterior) boundary conditions. Open geometry.

Parasitic reflections Widely used. Artificial,  Emulation of physical
= absorbing boundaries.  system. Technique

Dependence on that we have pursued.
arbitrary parameters.

J. P. Hugonin and P. Lalanne, J. Opt.
Soc. Am. A 22, 1844-1849 (2005)
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Open Geometry: Outline of Method

cladding core cladding

» Expand the field in each layer on analytical eigenmodes:
B0~ S U@ + [ ot e (1)
j —00

» Consider generic interface and compute reflection and
transmission matrices.

> Use scattering matrix formalism to express field in the full
structure.?!

[2]L, Li, J. Opt. Soc. Am. A 13, 1024-1035 (1996).
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Open Geometry: Matrix Equation

» Impose boundary conditions of electric field at interface.
Obtain Lippmann-Schwinger equation for interface field, ®(z):

E(z,z=0) = ®(z) = Po(z) + /O:o K(z,2)®(«')da’. (2)

> The field expansions coefficients, ¢; and ¢(p) depend on ®(z).
> Expand ®(z) on eigenmodes, ®(z) =, ¢; U ()
+ 75, c(p)vi(z, p) dp, and convert implicit integral equation
into matrix equation through a discretization:(3!

c=c’+Kcec=(I-K) ' (3)

» Compute reflection and transmission matrices, R and T, to be
used in scattering matrix formalism.

Bl P. T. Kristensen, P. Lodahl, and J. Mgrk, J. Opt. Soc. Am. B 27, 228-237 (2010).
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Rectangular, 2D Micropillar: Proof of Concept
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Numerical Results: Purcell Fact

GEOMETRY
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Conclusion and Outlook

» Proof of concept: Open geometry method allows for a
convergent computation of the Purcell factor.

» Formalism, in principle, applicable where analytical eigenmodes
are available (e.g. cylindrical or elliptical micropillars).

» Extension to more realistic 2D and 3D structures.

Questions?
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