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Modeling of Electric Field and Purcell Factor

I Modeling of electric field and Purcell
factor in microstructured, dielectric cavity,
due to dipolar source.

I Purcell factor an important figure of merit
for cavity, Fp = Q

V
3λ3

4π2n3 .
I Assuming unity quantum efficiency,

Fp = P/P0, where P and P0 are the
powers radiated in the cavity and in bulk,
respectively.[1]

I The power is proportional to the real part
of the electric field, P ∝ Re(E).
Accurate modeling of electric field and
Purcell factor desired.

[1]L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), 1st ed.

Nanophotonics Conference 8 March 2012 3 / 9



Modeling Schemes

Techniques for modeling electric field:
I FDTD, FEM. Memory requirements.
I Green’s function/tensor.
I Modal expansion methods:

I Plane wave expansions.
I Eigenmode expansions. Physically intuitive.

I Metallic boundary conditions, periodic boundary conditions.
I PML boundary conditions.
I No (exterior) boundary conditions. Open geometry.

Parasitic reflections
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Widely used. Artificial,
absorbing boundaries.
Dependence on
arbitrary parameters.
J. P. Hugonin and P. Lalanne, J. Opt.
Soc. Am. A 22, 1844-1849 (2005)

Emulation of physical
system. Technique
that we have pursued.
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Open Geometry: Outline of Method
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I Expand the field in each layer on analytical eigenmodes:

Eq(r) ∼
∑

j
cjU q

j (r) +
∫ ∞
−∞

c(ρ)ψq(r, ρ) dρ. (1)

I Consider generic interface and compute reflection and
transmission matrices.

I Use scattering matrix formalism to express field in the full
structure.[2]

[2]L. Li, J. Opt. Soc. Am. A 13, 1024-1035 (1996).
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Open Geometry: Matrix Equation

I Impose boundary conditions of electric field at interface.
Obtain Lippmann-Schwinger equation for interface field, Φ(x):

E(x, z = 0) ≡ Φ(x) = Φ0(x) +
∫ ∞
−∞

K (x, x ′)Φ(x ′) dx ′. (2)

I The field expansions coefficients, cj and c(ρ) depend on Φ(x).
I Expand Φ(x) on eigenmodes, Φ(x) =

∑
j cjU q

j (x)
+

∫∞
−∞ c(ρ)ψq(x, ρ) dρ, and convert implicit integral equation

into matrix equation through a discretization:[3]

c = c0 + Kc⇔ c = (I−K)−1c0. (3)

I Compute reflection and transmission matrices, R and T, to be
used in scattering matrix formalism.

[3]P. T. Kristensen, P. Lodahl, and J. Mørk, J. Opt. Soc. Am. B 27, 228-237 (2010).
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Rectangular, 2D Micropillar: Proof of Concept
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Numerical Results: Purcell Factor
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Conclusion and Outlook

I Proof of concept: Open geometry method allows for a
convergent computation of the Purcell factor.

I Formalism, in principle, applicable where analytical eigenmodes
are available (e.g. cylindrical or elliptical micropillars).

I Extension to more realistic 2D and 3D structures.

Questions?
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