Optical Simulations in an Open Geometry Using the Eigenmode Expansion Technique

Thomas Christensen & Jakob Rosenkrantz de Lasson

DTU Fotonik Department of Photonics Engineering

5 July 2010

DTU Fotonik Department of Photonics Engineering

Introduction Outline of Thesis

> Modeling of the E-field in slab structures illuminated by TE-waves.

- Two approaches: The closed and the open geometry.
- Field profiles and the normalized spontaneous emission rate used to assess the two approaches.

Wave Equations Maxwell's Equations → Scalar Helmholtz Equation

- Starting point: Maxwell's equations. 3D-problem.
- Reduction to a 1D-problem:
 - No free charges/currents and constant material parameters give Helmholtz equation:

$$\boldsymbol{\nabla}^2 \mathbf{E} + n^2 k_0^2 \mathbf{E} = 0.$$

- Slab structures: $\mathbf{E}(x, y, z) \equiv \mathbf{E}(x, z)$.
- TE-waves polarized along y:

$$\nabla^2 E_y(x,z) + n^2 k_0^2 E_y(x,z) = 0.$$

• Separation of variables, $E_y(x,z) = e_x(x)e_z(z)$, yields solutions:

$$e_x(x) \propto \exp(\pm i\kappa x), \qquad e_z(z) \propto \exp(\pm i\beta z).$$

Boundary Conditions Eigenmodes Field Profiles Spontaneous Emission Rate

The Closed Geometry Approach Boundary Conditions

- ▶ Main characteristic: Finite *x*-width. Metallic boundaries.
- Boundary conditions (BCs):
 - Inner BCs:
 - Continuity and differentiability of field in all points.
 - Outer BCs:
 - Vanishing field at x = 0 and $x = L_x$: $e_x(0) = e_x(L_x) = 0$.
 - z-BCs: Illumination.
- The x-BCs are handled by the semi-analytical approach and ensure a discrete, complete and orthonormal set of eigenmodes.
- The *z*-BCs are handled by the scattering matrix formalism.

Boundary Conditions Eigenmodes Field Profiles Spontaneous Emission Rate

The Closed Geometry Approach Eigenmodes

Boundary Conditions Eigenmodes Field Profiles Spontaneous Emission Rate

The Closed Geometry Approach Field Profile: Abruptly Terminated Waveguide

Abruptly terminated waveguide illuminated by fundamental mode.

Small solution domain. Parasitic reflections!

Boundary Conditions Eigenmodes Field Profiles Spontaneous Emission Rate

The Closed Geometry Approach Field Profile: Abruptly Terminated Waveguide

Abruptly terminated waveguide illuminated by fundamental mode.

Large solution domain.

Boundary Conditions Eigenmodes Field Profiles Spontaneous Emission Rate

The Closed Geometry Approach Field Profile: Bragg Grating

Bragg grating illuminated by fundamental mode.

Grating dimensions tuned to reflection at $\lambda = 1.55 \,\mu m$.

Boundary Conditions Eigenmodes Field Profiles Spontaneous Emission Rate

The Closed Geometry Approach Spontaneous Emission Rate: Theory

► The normalized spontaneous emission rate (SER):

$$\alpha \equiv \frac{\gamma}{\gamma_0}.$$

Equivalent quantity:

$$\alpha = \frac{P}{P_0}.$$

The power emitted from a dipole is proportional to the field due to the dipole, evaluated in the position of the dipole:

$$P = -\frac{1}{2} \operatorname{Re}(E(x_c, z_c)).$$

► The normalized SER should, in principle, be calculable by increasing *L_x* until convergence.

Boundary Conditions Eigenmodes Field Profiles Spontaneous Emission Rate

The Closed Geometry Approach

Spontaneous Emission Rate: Results

Single-layers with uniformity along z.

No convergence!

Boundary Conditions Eigenmodes Field Profiles Spontaneous Emission Rate

The Closed Geometry Approach Spontaneous Emission Rate: Results

Three-layer structure. Waveguide in vacuum.

Extension to multi-layered structures straightforward.

Boundary Conditions SER in Single-Layer Structure Two Layers

The Open Geometry Approach Presentation

- No outer x-BCs: $\mathbf{E}(x, z)$ is nowhere forced to vanish.
- More distinct mode types:
 - Guided modes: $U_i(x)$. Discrete set, finite number.
 - ▶ Radiation modes: $\phi_l(x,s)$ or $\psi_m(x,\rho)$. Continuum.
- The eigenmode expansion:

$$E_{\text{closed}} \sim \sum_{j} e_{x,j} \longrightarrow E_{\text{open}} \sim \sum_{j} U_{j} + \sum_{m=1}^{2} \int_{0}^{\infty} \psi_{m}(\rho) \,\mathrm{d}\rho.$$

Different treatment of radiation modes.

Boundary Conditions SER in Single-Layer Structure Two Layers

The Open Geometry Approach Spontaneous Emission Rate in Single-Layer Structure: Theory

- ► As in closed geometry: $P = -\frac{1}{2} \text{Re}(E(x_c, z_c))$. Field due to dipole required.
- The power emitted in a uniform layer has an analytical solution:

$$P_0 = \frac{1}{8}.$$

- P_0 is the reference power in all SER-computations.
- Power in waveguide single-layer structures require approximation of improper integrals, cf. eigenmode expansion.

Open Geometry

Boundary Conditions SER in Single-Laver Structure Two Lavers

The Open Geometry Approach Spontaneous Emission Rate in Single-Layer Structure: Results

Convergence: Relative deviation of 1% with 24 (vacuum) and 7 (waveguide) sampling points.

Thomas Christensen & Jakob Rosenkrantz de Lasson

Boundary Conditions SER in Single-Layer Structure Two Layers

The Open Geometry Approach Two Layers: Abruptly Terminated Waveguide

Reflection and transmission between waveguide and uniform layer.

Boundary Conditions SER in Single-Layer Structure Two Layers

The Open Geometry Approach Reflection and Transmission Coefficients

The fields in each layer, $E_1(x, z)$ and $E_2(x, z)$, given by the eigenmode expansion:

$$E_1(x,z) = U_1(x) \left[\exp(-i\beta_1 z) + R_1 \exp(i\beta_1 z) \right]$$
$$+ \sum_{m=1}^2 \int_0^\infty R(\rho) \psi_m(x,\rho) \exp(i\beta(\rho)z) \,\mathrm{d}\rho$$
$$E_2(x,z) = \sum_{l=1}^2 \int_0^\infty T(s) \phi_l(x,s) \exp(-i\gamma(s)z) \,\mathrm{d}s.$$

Reflection and transmission coefficients, R_1 , $R(\rho)$, and T(s), to be determined.

Boundary Conditions SER in Single-Layer Structure Two Layers

The Open Geometry Approach Aperture Field

 Continuity and differentiability of the field at z = 0 and use of orthonormality and completeness relations gives a Fredholm Equation of the Second Kind for the aperture field, Φ(x):

$$\Phi(x) = \Phi_0(x) + \lambda \int_{-\infty}^{\infty} \Phi(x') K(x, x') \, \mathrm{d}x'.$$

- R_1 , $R(\rho)$, and T(s): Functions of $\Phi(x)$.
- Assuming uniform convergence, an approximate solution to the integral equation is a truncated Liouville-Neumann series:

$$\Phi_N(x) = \Phi_0(x) + \lambda^N \sum_{j=1}^N C_j(x).$$

Boundary Conditions SER in Single-Layer Structure Two Layers

The Open Geometry Approach First Order Reflection and Transmission Coefficients

- Evanescent regime: Exponentially decaying along the propagation direction. Near-field.
- Propagating regime: Far-field.

Boundary Conditions SER in Single-Layer Structure Two Layers

The Open Geometry Approach First Order Field Profile

- No parasitic reflections.
- Radiation modes in the waveguide layer: Near-field effect.

Conclusion

- The closed geometry approach:
 - Illustrative field profiles, but parasitic reflections.
 - Fluctuating SER results: Relative deviation of 8%-26%.
 Primarily due to semi-radiating modes.
 - Versatile tool for modeling of arbitrary structures.
- The open geometry approach:
 - Rapidly converging single-layer SER-results using θ-sampling. Relative deviation of 1% with 24 and 7 samples.
 - Abruptly terminated waveguide:
 - Incident guided mode: Field profile without parasitic reflections.
 - Incident radiation mode: Further work needed.
 - SER calculations in arbitrary open geometry possible when treatment of incident radiation mode is complete.

Open geometry: More accurate results.