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[D. A. B. Miller, ICTON 2009]
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[J. D. Joannopoulos et al., ”Photonic Crystals – Molding the Flow of Light”]
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[Courtesy of Laboratory of Physics of Nanostructures, EPFL, Switzerland]
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An

insight review articles

842 NATURE | VOL 424 | 14 AUGUST 2003 | www.nature.com/nature

190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.

P $ !4
3
%2! !!

"
n!"

3 
!
Q
V!

where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect

E tched
holes

Defect region

Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect

E tched
holes

Defect region

Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
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photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 
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cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
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ly pumped single quantum dot has recently been demonstrated77. An

insight review articles

842 NATURE | VOL 424 | 14 AUGUST 2003 | www.nature.com/nature

190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 
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cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).

© 2003        Nature  Publishing Group

www.nanophotonics.dk 15 / 41

http://www.nanophotonics.dk


power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An

insight review articles

842 NATURE | VOL 424 | 14 AUGUST 2003 | www.nature.com/nature

190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
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Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
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ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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∣∣∣ i〉∣∣∣2 δ(ωi − ωf )
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 
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taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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pling55. Both microdisk68 and micropost-based devices74–76 have been
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high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
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large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).

© 2003        Nature  Publishing Group

z
/
λ
0

x/λ0

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
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Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).

© 2003        Nature  Publishing Group

[K. J. Vahala, Nature 424, 839 (2003)]

[E. Purcell, Phys. Rev. 69, 681 (1946)]

power into a single cavity mode (a necessity for efficient coupling to
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
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∇×E = −∂tB
∇×H = ∂tD + J
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III. What do we do in our research?

– First half: Light control
with slow light waveguides

power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An

insight review articles
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
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characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
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‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
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The optimal effective thickness of InAs was found to be
about 1.65 ML. Increasing the effective thickness of InAs
leads to increase in the sizes of the QDs, while their number
density remains unchanged. A lower effective thickness of
InAs leads to a lower number density while keeping the sizes
of the QDs constant. Thus, the optimal QD growth con-
ditions were found to be V/III ratio of 5, growth temperature
of 516 !C, and InAs effective thickness of 1.65 ML. QDs
with smallest dimensions and relatively high number density
(around 4.2" 1010 cm#2) were achieved under these
conditions.

The capping process is known to have a considerable
effect on the buried dots structural properties. Cross-
sectional and plan-view HAADF STEM images of typical
QDs in the sample without a GaAs capping layer grown
under our optimal conditions are shown in Figs. 1(a) and
1(c), respectively. The InAs-rich QD appears bright in the
images, as image intensity in HAADF STEM is strongly
dependent on the atomic number. The QDs were on average
25.3 6 3 nm in diameter and 5.3 6 0.9 nm in height. QDs
have symmetric bases without any significant elongation. A
wetting layer of $2 ML thickness was determined from the
cross-sectional images. The QDs in this sample emit at a
wavelength larger than 1.65 lm. In order to shift the emis-
sion to the desired wavelength range, we capped the QD
array with a thin GaAs layer (1.7 ML), before overgrowing
them fully with InGaAsP. Cross-sectional and plan-view
HAADF STEM images of typical QDs in this sample are
shown in Figs. 1(b) and 1(d). A significant reduction in the
average heights of the QDs in this sample, compared to the
QDs in Figs. 1(a) and 1(c), is clearly visible in the images.
The average measured height and diameter of the QDs in
this sample were 2.6 nm and 31.9 6 2 nm, respectively.
Therefore, the deposited 1.7 ML of GaAs has led to a redis-
tribution of the QD material, by modifying the strain distri-
bution in the system. Our detailed STEM study of this
mechanism described in Ref. 12 suggested the segregation of

the deposited GaAs around the bases of the QDs. It was
concluded that the deposited GaAs causes the migration of
InAs away from the tops of the QDs, resulting in the
observed height reduction of the QDs, and together with the
removed InAs segregates around the bases of the QDs.

The dependence of the QD PL peak position at room tem-
perature (RT) as a function of the GaAs thickness is shown in
the inset in Fig. 2. By increasing the GaAs thickness, a strong
blue shift occurs. In Fig. 2, the RT PL spectrum of the QDs
overgrown with 1.7 ML GaAs is shown. The QD PL peak
position is about 1.5 lm at 300 K with a full width at half
maximum (FWHM) of the emission of 170 nm. Such a
FWHM is a result of the QDs size distribution. PL excitation
spectroscopy at 7 K (not shown) proves multimodal size
distribution of QDs, in which the QDs height difference is an
integer 1 ML similar to the process described in Ref. 13. The
temperature dependence of the PL (not shown) showed a
spectrum integrated intensity ratio of around 3 between 77 K
to RT. This indicates a high optical quality of the material.

Laser performance: In order to test the QDs as gain
material, laser structures were fabricated with an active
region consisting of five layers, separated by 60 nm, of 1.65
ML InAs QDs covered with 1.7 ML of GaAs. The barriers
and separate confinement region was composed of InGaAsP
(Q1.08) with a total waveguide thickness of 450 nm sand-
wiched between n-and p-doped InP cladding layers. This
structure was processed into 2 lm wide ridge waveguide
lasers with different cavity lengths and the devices were sol-
dered epi-side up to AlN heatsinks.14 No facet coatings were
deposited. The lasers were tested in the CW regime at RT. In
Fig. 3, the light current characteristic and the voltage-current
characteristic for a 4 mm cavity length laser are shown.
Threshold currents are 275 mA and 400 mA for the 2 and 4
mm long devices, respectively. A thermal roll-over results in
a maximum optical output of 7.3 mW for the 4 mm long de-
vice. The inset in Fig. 3 shows the electroluminescence and
CW lasing spectra for the 4 mm long cavity as a function of
the excitation current. The wide spectral bandwidth is a
result of the QD size distribution. It lowers the efficiency of
these devices since only QDs with a certain size participate
on the lasing process. QDs with other sizes contribute to
losses. However, a broad spectrum is a key-requirement for
achieving short mode-locked laser pulse.

FIG. 1. Cross-sectional HAADF STEM images of QDs formed from depos-
iting 1.65 ML of InAs in a InGaAsP matrix and capped with: (a) InGaAsP
and (b) 1.7 ML of GaAs followed by InGaAsP. (c) and (d) Plan-view
HAADF STEM images of the QDs in samples (a) and (b), respectively.

FIG. 2. The RT spectra of QDs capped with 1.7 ML of GaAs. Inset shows
dependence of the QD PL peak position at RT on the thickness of the over-
grown GaAs layer.
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The optimal effective thickness of InAs was found to be
about 1.65 ML. Increasing the effective thickness of InAs
leads to increase in the sizes of the QDs, while their number
density remains unchanged. A lower effective thickness of
InAs leads to a lower number density while keeping the sizes
of the QDs constant. Thus, the optimal QD growth con-
ditions were found to be V/III ratio of 5, growth temperature
of 516 !C, and InAs effective thickness of 1.65 ML. QDs
with smallest dimensions and relatively high number density
(around 4.2" 1010 cm#2) were achieved under these
conditions.

The capping process is known to have a considerable
effect on the buried dots structural properties. Cross-
sectional and plan-view HAADF STEM images of typical
QDs in the sample without a GaAs capping layer grown
under our optimal conditions are shown in Figs. 1(a) and
1(c), respectively. The InAs-rich QD appears bright in the
images, as image intensity in HAADF STEM is strongly
dependent on the atomic number. The QDs were on average
25.3 6 3 nm in diameter and 5.3 6 0.9 nm in height. QDs
have symmetric bases without any significant elongation. A
wetting layer of $2 ML thickness was determined from the
cross-sectional images. The QDs in this sample emit at a
wavelength larger than 1.65 lm. In order to shift the emis-
sion to the desired wavelength range, we capped the QD
array with a thin GaAs layer (1.7 ML), before overgrowing
them fully with InGaAsP. Cross-sectional and plan-view
HAADF STEM images of typical QDs in this sample are
shown in Figs. 1(b) and 1(d). A significant reduction in the
average heights of the QDs in this sample, compared to the
QDs in Figs. 1(a) and 1(c), is clearly visible in the images.
The average measured height and diameter of the QDs in
this sample were 2.6 nm and 31.9 6 2 nm, respectively.
Therefore, the deposited 1.7 ML of GaAs has led to a redis-
tribution of the QD material, by modifying the strain distri-
bution in the system. Our detailed STEM study of this
mechanism described in Ref. 12 suggested the segregation of

the deposited GaAs around the bases of the QDs. It was
concluded that the deposited GaAs causes the migration of
InAs away from the tops of the QDs, resulting in the
observed height reduction of the QDs, and together with the
removed InAs segregates around the bases of the QDs.

The dependence of the QD PL peak position at room tem-
perature (RT) as a function of the GaAs thickness is shown in
the inset in Fig. 2. By increasing the GaAs thickness, a strong
blue shift occurs. In Fig. 2, the RT PL spectrum of the QDs
overgrown with 1.7 ML GaAs is shown. The QD PL peak
position is about 1.5 lm at 300 K with a full width at half
maximum (FWHM) of the emission of 170 nm. Such a
FWHM is a result of the QDs size distribution. PL excitation
spectroscopy at 7 K (not shown) proves multimodal size
distribution of QDs, in which the QDs height difference is an
integer 1 ML similar to the process described in Ref. 13. The
temperature dependence of the PL (not shown) showed a
spectrum integrated intensity ratio of around 3 between 77 K
to RT. This indicates a high optical quality of the material.

Laser performance: In order to test the QDs as gain
material, laser structures were fabricated with an active
region consisting of five layers, separated by 60 nm, of 1.65
ML InAs QDs covered with 1.7 ML of GaAs. The barriers
and separate confinement region was composed of InGaAsP
(Q1.08) with a total waveguide thickness of 450 nm sand-
wiched between n-and p-doped InP cladding layers. This
structure was processed into 2 lm wide ridge waveguide
lasers with different cavity lengths and the devices were sol-
dered epi-side up to AlN heatsinks.14 No facet coatings were
deposited. The lasers were tested in the CW regime at RT. In
Fig. 3, the light current characteristic and the voltage-current
characteristic for a 4 mm cavity length laser are shown.
Threshold currents are 275 mA and 400 mA for the 2 and 4
mm long devices, respectively. A thermal roll-over results in
a maximum optical output of 7.3 mW for the 4 mm long de-
vice. The inset in Fig. 3 shows the electroluminescence and
CW lasing spectra for the 4 mm long cavity as a function of
the excitation current. The wide spectral bandwidth is a
result of the QD size distribution. It lowers the efficiency of
these devices since only QDs with a certain size participate
on the lasing process. QDs with other sizes contribute to
losses. However, a broad spectrum is a key-requirement for
achieving short mode-locked laser pulse.

FIG. 1. Cross-sectional HAADF STEM images of QDs formed from depos-
iting 1.65 ML of InAs in a InGaAsP matrix and capped with: (a) InGaAsP
and (b) 1.7 ML of GaAs followed by InGaAsP. (c) and (d) Plan-view
HAADF STEM images of the QDs in samples (a) and (b), respectively.

FIG. 2. The RT spectra of QDs capped with 1.7 ML of GaAs. Inset shows
dependence of the QD PL peak position at RT on the thickness of the over-
grown GaAs layer.
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The optimal effective thickness of InAs was found to be
about 1.65 ML. Increasing the effective thickness of InAs
leads to increase in the sizes of the QDs, while their number
density remains unchanged. A lower effective thickness of
InAs leads to a lower number density while keeping the sizes
of the QDs constant. Thus, the optimal QD growth con-
ditions were found to be V/III ratio of 5, growth temperature
of 516 !C, and InAs effective thickness of 1.65 ML. QDs
with smallest dimensions and relatively high number density
(around 4.2" 1010 cm#2) were achieved under these
conditions.

The capping process is known to have a considerable
effect on the buried dots structural properties. Cross-
sectional and plan-view HAADF STEM images of typical
QDs in the sample without a GaAs capping layer grown
under our optimal conditions are shown in Figs. 1(a) and
1(c), respectively. The InAs-rich QD appears bright in the
images, as image intensity in HAADF STEM is strongly
dependent on the atomic number. The QDs were on average
25.3 6 3 nm in diameter and 5.3 6 0.9 nm in height. QDs
have symmetric bases without any significant elongation. A
wetting layer of $2 ML thickness was determined from the
cross-sectional images. The QDs in this sample emit at a
wavelength larger than 1.65 lm. In order to shift the emis-
sion to the desired wavelength range, we capped the QD
array with a thin GaAs layer (1.7 ML), before overgrowing
them fully with InGaAsP. Cross-sectional and plan-view
HAADF STEM images of typical QDs in this sample are
shown in Figs. 1(b) and 1(d). A significant reduction in the
average heights of the QDs in this sample, compared to the
QDs in Figs. 1(a) and 1(c), is clearly visible in the images.
The average measured height and diameter of the QDs in
this sample were 2.6 nm and 31.9 6 2 nm, respectively.
Therefore, the deposited 1.7 ML of GaAs has led to a redis-
tribution of the QD material, by modifying the strain distri-
bution in the system. Our detailed STEM study of this
mechanism described in Ref. 12 suggested the segregation of

the deposited GaAs around the bases of the QDs. It was
concluded that the deposited GaAs causes the migration of
InAs away from the tops of the QDs, resulting in the
observed height reduction of the QDs, and together with the
removed InAs segregates around the bases of the QDs.

The dependence of the QD PL peak position at room tem-
perature (RT) as a function of the GaAs thickness is shown in
the inset in Fig. 2. By increasing the GaAs thickness, a strong
blue shift occurs. In Fig. 2, the RT PL spectrum of the QDs
overgrown with 1.7 ML GaAs is shown. The QD PL peak
position is about 1.5 lm at 300 K with a full width at half
maximum (FWHM) of the emission of 170 nm. Such a
FWHM is a result of the QDs size distribution. PL excitation
spectroscopy at 7 K (not shown) proves multimodal size
distribution of QDs, in which the QDs height difference is an
integer 1 ML similar to the process described in Ref. 13. The
temperature dependence of the PL (not shown) showed a
spectrum integrated intensity ratio of around 3 between 77 K
to RT. This indicates a high optical quality of the material.

Laser performance: In order to test the QDs as gain
material, laser structures were fabricated with an active
region consisting of five layers, separated by 60 nm, of 1.65
ML InAs QDs covered with 1.7 ML of GaAs. The barriers
and separate confinement region was composed of InGaAsP
(Q1.08) with a total waveguide thickness of 450 nm sand-
wiched between n-and p-doped InP cladding layers. This
structure was processed into 2 lm wide ridge waveguide
lasers with different cavity lengths and the devices were sol-
dered epi-side up to AlN heatsinks.14 No facet coatings were
deposited. The lasers were tested in the CW regime at RT. In
Fig. 3, the light current characteristic and the voltage-current
characteristic for a 4 mm cavity length laser are shown.
Threshold currents are 275 mA and 400 mA for the 2 and 4
mm long devices, respectively. A thermal roll-over results in
a maximum optical output of 7.3 mW for the 4 mm long de-
vice. The inset in Fig. 3 shows the electroluminescence and
CW lasing spectra for the 4 mm long cavity as a function of
the excitation current. The wide spectral bandwidth is a
result of the QD size distribution. It lowers the efficiency of
these devices since only QDs with a certain size participate
on the lasing process. QDs with other sizes contribute to
losses. However, a broad spectrum is a key-requirement for
achieving short mode-locked laser pulse.

FIG. 1. Cross-sectional HAADF STEM images of QDs formed from depos-
iting 1.65 ML of InAs in a InGaAsP matrix and capped with: (a) InGaAsP
and (b) 1.7 ML of GaAs followed by InGaAsP. (c) and (d) Plan-view
HAADF STEM images of the QDs in samples (a) and (b), respectively.

FIG. 2. The RT spectra of QDs capped with 1.7 ML of GaAs. Inset shows
dependence of the QD PL peak position at RT on the thickness of the over-
grown GaAs layer.
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The optimal effective thickness of InAs was found to be
about 1.65 ML. Increasing the effective thickness of InAs
leads to increase in the sizes of the QDs, while their number
density remains unchanged. A lower effective thickness of
InAs leads to a lower number density while keeping the sizes
of the QDs constant. Thus, the optimal QD growth con-
ditions were found to be V/III ratio of 5, growth temperature
of 516 !C, and InAs effective thickness of 1.65 ML. QDs
with smallest dimensions and relatively high number density
(around 4.2" 1010 cm#2) were achieved under these
conditions.

The capping process is known to have a considerable
effect on the buried dots structural properties. Cross-
sectional and plan-view HAADF STEM images of typical
QDs in the sample without a GaAs capping layer grown
under our optimal conditions are shown in Figs. 1(a) and
1(c), respectively. The InAs-rich QD appears bright in the
images, as image intensity in HAADF STEM is strongly
dependent on the atomic number. The QDs were on average
25.3 6 3 nm in diameter and 5.3 6 0.9 nm in height. QDs
have symmetric bases without any significant elongation. A
wetting layer of $2 ML thickness was determined from the
cross-sectional images. The QDs in this sample emit at a
wavelength larger than 1.65 lm. In order to shift the emis-
sion to the desired wavelength range, we capped the QD
array with a thin GaAs layer (1.7 ML), before overgrowing
them fully with InGaAsP. Cross-sectional and plan-view
HAADF STEM images of typical QDs in this sample are
shown in Figs. 1(b) and 1(d). A significant reduction in the
average heights of the QDs in this sample, compared to the
QDs in Figs. 1(a) and 1(c), is clearly visible in the images.
The average measured height and diameter of the QDs in
this sample were 2.6 nm and 31.9 6 2 nm, respectively.
Therefore, the deposited 1.7 ML of GaAs has led to a redis-
tribution of the QD material, by modifying the strain distri-
bution in the system. Our detailed STEM study of this
mechanism described in Ref. 12 suggested the segregation of

the deposited GaAs around the bases of the QDs. It was
concluded that the deposited GaAs causes the migration of
InAs away from the tops of the QDs, resulting in the
observed height reduction of the QDs, and together with the
removed InAs segregates around the bases of the QDs.

The dependence of the QD PL peak position at room tem-
perature (RT) as a function of the GaAs thickness is shown in
the inset in Fig. 2. By increasing the GaAs thickness, a strong
blue shift occurs. In Fig. 2, the RT PL spectrum of the QDs
overgrown with 1.7 ML GaAs is shown. The QD PL peak
position is about 1.5 lm at 300 K with a full width at half
maximum (FWHM) of the emission of 170 nm. Such a
FWHM is a result of the QDs size distribution. PL excitation
spectroscopy at 7 K (not shown) proves multimodal size
distribution of QDs, in which the QDs height difference is an
integer 1 ML similar to the process described in Ref. 13. The
temperature dependence of the PL (not shown) showed a
spectrum integrated intensity ratio of around 3 between 77 K
to RT. This indicates a high optical quality of the material.

Laser performance: In order to test the QDs as gain
material, laser structures were fabricated with an active
region consisting of five layers, separated by 60 nm, of 1.65
ML InAs QDs covered with 1.7 ML of GaAs. The barriers
and separate confinement region was composed of InGaAsP
(Q1.08) with a total waveguide thickness of 450 nm sand-
wiched between n-and p-doped InP cladding layers. This
structure was processed into 2 lm wide ridge waveguide
lasers with different cavity lengths and the devices were sol-
dered epi-side up to AlN heatsinks.14 No facet coatings were
deposited. The lasers were tested in the CW regime at RT. In
Fig. 3, the light current characteristic and the voltage-current
characteristic for a 4 mm cavity length laser are shown.
Threshold currents are 275 mA and 400 mA for the 2 and 4
mm long devices, respectively. A thermal roll-over results in
a maximum optical output of 7.3 mW for the 4 mm long de-
vice. The inset in Fig. 3 shows the electroluminescence and
CW lasing spectra for the 4 mm long cavity as a function of
the excitation current. The wide spectral bandwidth is a
result of the QD size distribution. It lowers the efficiency of
these devices since only QDs with a certain size participate
on the lasing process. QDs with other sizes contribute to
losses. However, a broad spectrum is a key-requirement for
achieving short mode-locked laser pulse.

FIG. 1. Cross-sectional HAADF STEM images of QDs formed from depos-
iting 1.65 ML of InAs in a InGaAsP matrix and capped with: (a) InGaAsP
and (b) 1.7 ML of GaAs followed by InGaAsP. (c) and (d) Plan-view
HAADF STEM images of the QDs in samples (a) and (b), respectively.

FIG. 2. The RT spectra of QDs capped with 1.7 ML of GaAs. Inset shows
dependence of the QD PL peak position at RT on the thickness of the over-
grown GaAs layer.
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The optimal effective thickness of InAs was found to be
about 1.65 ML. Increasing the effective thickness of InAs
leads to increase in the sizes of the QDs, while their number
density remains unchanged. A lower effective thickness of
InAs leads to a lower number density while keeping the sizes
of the QDs constant. Thus, the optimal QD growth con-
ditions were found to be V/III ratio of 5, growth temperature
of 516 !C, and InAs effective thickness of 1.65 ML. QDs
with smallest dimensions and relatively high number density
(around 4.2" 1010 cm#2) were achieved under these
conditions.

The capping process is known to have a considerable
effect on the buried dots structural properties. Cross-
sectional and plan-view HAADF STEM images of typical
QDs in the sample without a GaAs capping layer grown
under our optimal conditions are shown in Figs. 1(a) and
1(c), respectively. The InAs-rich QD appears bright in the
images, as image intensity in HAADF STEM is strongly
dependent on the atomic number. The QDs were on average
25.3 6 3 nm in diameter and 5.3 6 0.9 nm in height. QDs
have symmetric bases without any significant elongation. A
wetting layer of $2 ML thickness was determined from the
cross-sectional images. The QDs in this sample emit at a
wavelength larger than 1.65 lm. In order to shift the emis-
sion to the desired wavelength range, we capped the QD
array with a thin GaAs layer (1.7 ML), before overgrowing
them fully with InGaAsP. Cross-sectional and plan-view
HAADF STEM images of typical QDs in this sample are
shown in Figs. 1(b) and 1(d). A significant reduction in the
average heights of the QDs in this sample, compared to the
QDs in Figs. 1(a) and 1(c), is clearly visible in the images.
The average measured height and diameter of the QDs in
this sample were 2.6 nm and 31.9 6 2 nm, respectively.
Therefore, the deposited 1.7 ML of GaAs has led to a redis-
tribution of the QD material, by modifying the strain distri-
bution in the system. Our detailed STEM study of this
mechanism described in Ref. 12 suggested the segregation of

the deposited GaAs around the bases of the QDs. It was
concluded that the deposited GaAs causes the migration of
InAs away from the tops of the QDs, resulting in the
observed height reduction of the QDs, and together with the
removed InAs segregates around the bases of the QDs.

The dependence of the QD PL peak position at room tem-
perature (RT) as a function of the GaAs thickness is shown in
the inset in Fig. 2. By increasing the GaAs thickness, a strong
blue shift occurs. In Fig. 2, the RT PL spectrum of the QDs
overgrown with 1.7 ML GaAs is shown. The QD PL peak
position is about 1.5 lm at 300 K with a full width at half
maximum (FWHM) of the emission of 170 nm. Such a
FWHM is a result of the QDs size distribution. PL excitation
spectroscopy at 7 K (not shown) proves multimodal size
distribution of QDs, in which the QDs height difference is an
integer 1 ML similar to the process described in Ref. 13. The
temperature dependence of the PL (not shown) showed a
spectrum integrated intensity ratio of around 3 between 77 K
to RT. This indicates a high optical quality of the material.

Laser performance: In order to test the QDs as gain
material, laser structures were fabricated with an active
region consisting of five layers, separated by 60 nm, of 1.65
ML InAs QDs covered with 1.7 ML of GaAs. The barriers
and separate confinement region was composed of InGaAsP
(Q1.08) with a total waveguide thickness of 450 nm sand-
wiched between n-and p-doped InP cladding layers. This
structure was processed into 2 lm wide ridge waveguide
lasers with different cavity lengths and the devices were sol-
dered epi-side up to AlN heatsinks.14 No facet coatings were
deposited. The lasers were tested in the CW regime at RT. In
Fig. 3, the light current characteristic and the voltage-current
characteristic for a 4 mm cavity length laser are shown.
Threshold currents are 275 mA and 400 mA for the 2 and 4
mm long devices, respectively. A thermal roll-over results in
a maximum optical output of 7.3 mW for the 4 mm long de-
vice. The inset in Fig. 3 shows the electroluminescence and
CW lasing spectra for the 4 mm long cavity as a function of
the excitation current. The wide spectral bandwidth is a
result of the QD size distribution. It lowers the efficiency of
these devices since only QDs with a certain size participate
on the lasing process. QDs with other sizes contribute to
losses. However, a broad spectrum is a key-requirement for
achieving short mode-locked laser pulse.

FIG. 1. Cross-sectional HAADF STEM images of QDs formed from depos-
iting 1.65 ML of InAs in a InGaAsP matrix and capped with: (a) InGaAsP
and (b) 1.7 ML of GaAs followed by InGaAsP. (c) and (d) Plan-view
HAADF STEM images of the QDs in samples (a) and (b), respectively.

FIG. 2. The RT spectra of QDs capped with 1.7 ML of GaAs. Inset shows
dependence of the QD PL peak position at RT on the thickness of the over-
grown GaAs layer.
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growth rate anisotropy and nanocapillarity effects [27].
Taking advantage of the improved QD uniformity and
optical quality, and of the better control over the emission
wavelength obtained by using dense pyramid patterns
(inhomogeneous broadening 1 meV, exciton linewidth
100 !eV) [27,28], we based the fabrication of our struc-
tures on PQD arrays of 400 nm pitch [Fig. 1(a)]. By using
an optimized L3 cavity design, all PQDs except for the one
in the center of the cavity are etched away [Fig. 1(b)]. We
verified by means of a secondary electron microscope that
the mutual alignment accuracy between the PQD arrays
and the PhC hole patterns was 50 nm across the whole
substrate [see the example in Fig. 1(c)]. As evidenced by
the 3D finite difference time domain simulation of the
confined optical field shown in Fig. 1(d), this precision is
sufficient for positioning the PQD at a point where the
intensity is at least 60% of its maximum value for the
fundamental cavity mode. By using this fabrication ap-
proach, we were able to obtain QD-cavity structures with
spectra showing distinct coupling [Fig. 1(e)] in a determi-
nistic and reproducible fashion. The measured quality (Q)

factors were rather moderate [Q! 2500 in Fig. 1(e)],
which is probably due to PhC disorder and residual ab-
sorption by bulk and surface states in the membrane layer.
However, such Q values are well suited for observing
and studying the dot-cavity coupling mechanism addressed
here.
A first indication of the short-ranged nature of the cou-

pling of PQDs to PhC cavities can be deduced from the PL
spectra presented in Figs. 2(a) and 2(b), where the emission
was resolved in linear polarization along the H and V
directions [as defined in Fig. 1(c)]. Results for two nomi-
nally identical PQD-cavity structures (called A and B here)
are presented here to show the reproducibility of our data.
For structure A, at 10 K an exciton (X) feature is observed
at 1.5 meV detuning with respect to a strongly y-polarized
CM. As the X is tuned into resonance with the CM by
raising the temperature, the former becomes increasingly
copolarized with the cavity mode. At higher temperatures
(> 50 K), the X emission feature eventually recovers its
initial polarization state. A similar behavior is evident for
the PQD-cavity structure B, as shown in Fig. 2(b). These
observations suggest a dot-cavity coupling mechanism that
is effective only within a small detuning range. By using
the degree of linear polarization " ¼ IV#IH

IHþIV
, where IH

and IV stand for the integrated intensity components,
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FIG. 1 (color online). (a) Schematic illustration of a hexagonal
array of pyramidal recesses, each with a side length of!300 nm
and containing a single PQD (green dots). (b) A PhC structure
coaligned with the underlying PQD array with a lattice constant
equal to half the pyramid pitch defines the single QD nanocavity
system. (c) Secondary electron microscope image of an actual
structure (slightly tilted perspective), with the location of the QD
marked by the crossing of the dashed lines. (d) Spatial distribu-
tion of the electric field intensity of the fundamental cavity
mode, computed by 3D finite difference time domain simulation.
This mode is mainly polarized along the V axis indicated in (c).
(e) PL spectrum of a typical PQD-cavity structure showing the
exciton emission (X) and the fundamental CM.

(b)(a)

(d)(c)

FIG. 2 (color online). Polarization-resolved photolumines-
cence measurements. (a),(b) Temperature scanning of the dot-
cavity detuning for two different PQD-cavity structures. (c),
(d) Degree of polarization " versus detuning of the X and CM
lines for the two samples. The dashed lines are guides to the eye.
The gray-shaded area in (c) and (d) depicts the typical range for
" in the case of bare PQDs (i.e., dots that were not incorporated
in a cavity structure). In both (a) and (b), the structures were
nonresonantly excited with #exc ¼ 700 nm.
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We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission
properties of active semiconductor photonic-crystal waveguides. In such devices, slow-light propagation can be
used to enhance the material gain per unit length, enabling, for example, the realization of short optical amplifiers
compatible with photonic integration. The coupled-wave analysis is compared to numerical approaches based
on the Fourier modal method and a frequency domain finite-element technique. The presence of material gain
leads to the buildup of a backscattered field, which is interpreted as distributed feedback effects or reflection at
passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure
of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.

DOI: 10.1103/PhysRevA.92.053839 PACS number(s): 42.55.Px, 42.55.Tv, 42.70.Qs

I. INTRODUCTION

Photonic-crystal (PhC) structures have been proposed as a
waveguide infrastructure for high-density photonic integrated
circuits [1–3]. Optical amplification is one of the fundamental
functionalities required for compensating attenuation and
coupling losses and thus scaling up the number of integrated
devices [4]. A major advantage of using photonic-crystal
waveguides, as opposed to standard ridge-type waveguides,
when realizing active structures with embedded semiconductor
gain layers is the use of slow-light effects to enhance light-
matter interactions. Thus, the spatial gain coefficient may be
increased by exploiting slow-light propagation, enabling the
realization of short devices suitable for photonic integration
[5–7]. Similarly, nonlinear effects induced by carrier depletion
may also be enhanced, leading to devices with ultralow
saturation power, which may be of interest for optical signal
processing applications [8].

In this work, we theoretically investigate the frequency-
domain optical propagation properties of an active PhC
waveguide of finite length embedded in an ideal passive
periodic PhC waveguide platform as shown in Fig. 1. Such
structures with site-controlled active gain sections may be
fabricated using different techniques [9–12].

As shown in Fig. 1, we approximate the device as a
photonic-crystal heterostucture [13] with a slowly varying
envelope of the imaginary part of the refractive index (bottom
part) and a fast periodic variation that naturally arises from the
penetration of the air holes through the gain layer (top part).
Such an envelope approximation in photonic-crystal devices
is analogous to the treatment of semiconductor optoelectronic
devices. Based on a perturbative approach [14], effective
one-dimensional (1D) coupled-wave analysis has been widely
used to investigate the impact of slow-light effects on optical
properties of passive PhC waveguides, e.g., for efficient taper
design [15], Kerr nonlinearities [16,17], and disorder-induced
scattering [18,19].

*jesm@fotonik.dtu.dk

FIG. 1. (Color online) Illustration of defect photonic-crystal
waveguide. The red part of the structure is active, i.e., this part of
the membrane structure contains embedded layers of quantum wells
or quantum dots that may provide gain upon optical or electrical
pumping. The lattice constant is a and the length of the active region
is L.

For perfectly periodic PhC waveguides, neglecting Kerr
nonlinearity and disorder, a rigorous set of equations for
the amplitudes of forward- and backward-propagating un-
perturbed Bloch waves may be derived [20]. In such a
formulation, the presence of active material in a finite
section of the PhC waveguide leads to multiple scattering,
which represents material-gain-induced coupling between the
forward and backward Bloch waves of passive structures. Such
distributed feedback (DFB) effects have so far not been consid-
ered in slow-light enhanced semiconductor optical amplifiers
[7,21–23]. We show here that it is important to consider the
impact of such feedback effects when calculating the gain of
an active PhC waveguide.

Alternatively, we may treat the structure as multiple
waveguide sections, namely an active PhC waveguide section
interfaced with two semi-infinite passive PhC waveguides
on both sides, with distinct sets of Bloch modes in the
passive and active PhC waveguide sections. In this picture, the
active-passive interfaces induce reflections, and Fabry-Pérot
effects are important in determining the strength of the
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effects are important in determining the strength of the

1050-2947/2015/92(5)/053839(8) 053839-1 ©2015 American Physical Society

www.nanophotonics.dk 30 / 41

http://www.nanophotonics.dk


PHYSICAL REVIEW A 92, 053839 (2015)

Impact of slow-light enhancement on optical propagation in
active semiconductor photonic-crystal waveguides

Yaohui Chen, Jakob Rosenkrantz de Lasson, Niels Gregersen, and Jesper Mørk*

DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343,
DK-2800 Kongens Lyngby, Denmark

(Received 21 August 2015; published 17 November 2015)

We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission
properties of active semiconductor photonic-crystal waveguides. In such devices, slow-light propagation can be
used to enhance the material gain per unit length, enabling, for example, the realization of short optical amplifiers
compatible with photonic integration. The coupled-wave analysis is compared to numerical approaches based
on the Fourier modal method and a frequency domain finite-element technique. The presence of material gain
leads to the buildup of a backscattered field, which is interpreted as distributed feedback effects or reflection at
passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure
of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.

DOI: 10.1103/PhysRevA.92.053839 PACS number(s): 42.55.Px, 42.55.Tv, 42.70.Qs

I. INTRODUCTION

Photonic-crystal (PhC) structures have been proposed as a
waveguide infrastructure for high-density photonic integrated
circuits [1–3]. Optical amplification is one of the fundamental
functionalities required for compensating attenuation and
coupling losses and thus scaling up the number of integrated
devices [4]. A major advantage of using photonic-crystal
waveguides, as opposed to standard ridge-type waveguides,
when realizing active structures with embedded semiconductor
gain layers is the use of slow-light effects to enhance light-
matter interactions. Thus, the spatial gain coefficient may be
increased by exploiting slow-light propagation, enabling the
realization of short devices suitable for photonic integration
[5–7]. Similarly, nonlinear effects induced by carrier depletion
may also be enhanced, leading to devices with ultralow
saturation power, which may be of interest for optical signal
processing applications [8].

In this work, we theoretically investigate the frequency-
domain optical propagation properties of an active PhC
waveguide of finite length embedded in an ideal passive
periodic PhC waveguide platform as shown in Fig. 1. Such
structures with site-controlled active gain sections may be
fabricated using different techniques [9–12].

As shown in Fig. 1, we approximate the device as a
photonic-crystal heterostucture [13] with a slowly varying
envelope of the imaginary part of the refractive index (bottom
part) and a fast periodic variation that naturally arises from the
penetration of the air holes through the gain layer (top part).
Such an envelope approximation in photonic-crystal devices
is analogous to the treatment of semiconductor optoelectronic
devices. Based on a perturbative approach [14], effective
one-dimensional (1D) coupled-wave analysis has been widely
used to investigate the impact of slow-light effects on optical
properties of passive PhC waveguides, e.g., for efficient taper
design [15], Kerr nonlinearities [16,17], and disorder-induced
scattering [18,19].

*jesm@fotonik.dtu.dk

FIG. 1. (Color online) Illustration of defect photonic-crystal
waveguide. The red part of the structure is active, i.e., this part of
the membrane structure contains embedded layers of quantum wells
or quantum dots that may provide gain upon optical or electrical
pumping. The lattice constant is a and the length of the active region
is L.

For perfectly periodic PhC waveguides, neglecting Kerr
nonlinearity and disorder, a rigorous set of equations for
the amplitudes of forward- and backward-propagating un-
perturbed Bloch waves may be derived [20]. In such a
formulation, the presence of active material in a finite
section of the PhC waveguide leads to multiple scattering,
which represents material-gain-induced coupling between the
forward and backward Bloch waves of passive structures. Such
distributed feedback (DFB) effects have so far not been consid-
ered in slow-light enhanced semiconductor optical amplifiers
[7,21–23]. We show here that it is important to consider the
impact of such feedback effects when calculating the gain of
an active PhC waveguide.

Alternatively, we may treat the structure as multiple
waveguide sections, namely an active PhC waveguide section
interfaced with two semi-infinite passive PhC waveguides
on both sides, with distinct sets of Bloch modes in the
passive and active PhC waveguide sections. In this picture, the
active-passive interfaces induce reflections, and Fabry-Pérot
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In the limit of a weak electronic perturbation, we express
the self-consistent solutions as superpositions of the guided
Bloch waves for the passive structure, with slowly varying
amplitudes ψ±(z):

E ≃ ψ+(z)E0,+ + ψ−(z)E0,−, (6)

H ≃ ψ+(z)H0,+ + ψ−(z)H0,−. (7)

By using Eqs. (2), (3), (6), and (7), Eq. (1) can be formulated
as a set of continuity equations for the forward- and backward-
propagating amplitudes:

± 1
2∇ · [ψ±(z)Re{e × h∗}] = iωPpert · E∗

0,±. (8)

Equation (8) can be derived using the divergence theorem for
a closed surface S enclosing the simulation domain:

± 1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS = iω

∫

V

(Ppert · E∗
0,±) dV.

(9)

Here, n̂ is the outward unit normal vector of the closed surface
depicted in Fig. 2(a). This closed surface can be chosen
conveniently to comply with the experimental geometry
considered (near-field measurement [33] or transmission mea-
surement [34]), as well as the simulation domain and boundary
conditions (BCs) (e.g., periodic BCs [35] or perfectly matched
layer (PML) BCs [25]). The left-hand side (LHS) of Eq. (8)
describes the possible channels for the power flux in or out
of the surface and the right-hand side (RHS) describes the
source term. Equation (9) is in the form of a set of implicit
integral equations. Assuming that the considered modes are
transversely confined, the surface integral [LHS of Eq. (9)]
reduces to two integrals between the planes z = 0 and z = L,
described as

±1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS

≃ ±
∫ L

0
∂zψ±(z) dz × 1

2

∫

S

[Re{e × h∗} · ẑ] dS. (10)

For simplicity, we describe the carrier-induced complex
susceptibility perturbation as a product of a complex constant
χpert and an active material distribution function F (r):

Ppert = 1
2ε0χpertF (r)E, (11)

where F (r) = 1 (= 0) in the active (passive) region.
We now obtain the coupled-mode equations from Eq. (9)

with substitution from Eqs. (10) and (11):

∂zψ+(z) = iω

c
ngzχpert[δ(z)ψ+ + κ∗(z)e−i2kzzψ−], (12)

∂zψ−(z) = − iω

c
ngzχpert[δ(z)ψ− + κ(z)ei2kzzψ+], (13)

with

δ(z) ≡
a

∫
S
[ε0F (r)|e|2] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

, (14)

κ(z) ≡
a

∫
S
[ε0F (r)e · e] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

. (15)

Here, δ(z) and κ(z) denote the complex-valued propagation
and backscattering coefficient induced by the perturbation due
to the active material. The above 1D coupled-wave equations
are mathematically equivalent to a 2 × 2 scattering matrix
problem in a stack of thin films (at each z coordinate) and
readily solved numerically.

We note the similarity of the above coupled-mode equa-
tions with the coupled-mode equations originally derived by
Kogelnik and Shank for distributed feedback lasers [36].
However, while those equations describe the slow variation
of the complex amplitudes of plane waves (see also [37] for
application to PhC waveguides), Eqs. (12) and (13) describe
the slowly varying amplitudes of the Bloch waves of the
corresponding passive PhC. This has the consequence that in
the absence of a polarization perturbation, i.e., χpert = 0, the
forward and backward Bloch waves do not couple but remain
unidirectionally propagating waves, as required. The presence
of a perturbation, however, leads to coupling of the Bloch
waves, since the material perturbation gives rise to distributed
feedback. This is analogous to the scattering between Bloch
waves induced by structural disorder [18], although in that
case the backscattering sites are randomly distributed.

In general, the harmonic term exp(±i2kzz) leads to rela-
tively low backscattering efficiency due to phase mismatch
between forward- and backward-propagating Bloch waves.
Propagation losses decrease the effective propagation length
and further damp the backscattering. In passive PhC waveg-
uides, one can integrate similar coupled-mode equations
approximately by neglecting the distributed feedback terms
as long as the backscattered power is weak [15]. On the other
hand, in the case of positive gain, the effective length, over
which wave interaction takes place, increases, and a significant
backscattered wave may be built up, as we show here.

Equations (12) and (13) must be supplemented by boundary
conditions at the passive-active interfaces. The boundary
conditions [38] are

ψ+(0) = r1ψ−(0) + ψ0, (16)

ψ−(L) exp(−ikzL) = r2ψ+(L) exp(ikzL), (17)

where r1 and r2 are the amplitude reflectivities of the left
and right passive-active interfaces and ψ0 = 1 indicates unity
incident field from the left interface.

Finally, we note that the coupled-wave approach presented
here permits the inclusion of disorder-induced losses [18,19]
and carrier dynamics [8], which is beyond the scope of this
paper.

III. SIMULATION RESULTS

For the numerical investigations, we consider a two-
dimensional (2D) triangular lattice of air holes (hole radius
r = 0.25a) embedded in a semiconductor membrane with a
dielectric constant of n2

s = 12.1. The waveguide is a W1 line
defect with a single row of air holes omitted. The presence
of material gain or absorption is modeled via an imaginary
refractive index perturbation ni , corresponding to a material
gain g0 = −2niω/c. The corresponding susceptibility pertur-
bation is χpert = −n2

i + i2nsni . In practice, the value of the
gain coefficient is controlled via the charge-carrier density. We
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signal transmitted from the input to the output waveguide
as well as the back-reflected signal. We solve the optical
multiple-scattering problem in aggregates of generalized thin
films using the Fourier modal method (FMM) [or rigorous
coupled wave analysis (RCWA)] [24–26], which has been
widely implemented for various periodic photonic structures.
Using these methods, Bloch waves are computed and sorted
in both passive and active PhC sections [27].

In the following, we numerically validate that both ap-
proaches are equivalent in analyzing the proposed active
PhC devices. A similar discussion for active Bragg grating
structures can be found in [28]. We also analyze the situation
with very large material gain values, in which case the band
structure of the photonic-crystal structure is modified.

Here we limit our attention to the simplest type of photonic-
crystal waveguide, with one row of missing holes (W1
waveguide). In that case, slow-light propagation is realized
close to the Brillouin zone edge and the bandwidth over
which significant slowdown effects are realized is limited.
It was shown, though, that by dispersion engineering the
waveguide, a slow-light region of significant bandwidth can be
obtained for a frequency range displaced from the band edge
[29]. A systematic approach for optimizing the group index
bandwidth product was recently demonstrated [30]. For such
dispersion-engineered structures, the large group index region
may be centered around an inflection point of the dispersion
curves and it was shown that strong loss (or gain) can induce
drastic changes of the dispersion curves [31].

The paper is organized as follows: In Sec. II we derive
the coupled Bloch wave equations. Section III presents the
numerical results. We first consider a long waveguide with
relatively weak gain, and compare the coupled-wave analysis
to numerical results obtained using the FMM. Second, we
consider a shorter waveguide, enabling the consideration of
larger absolute gain coefficients as well as the use of a finite-
element numerical technique. Finally, the main conclusions
are summarized in Sec. IV.

II. EFFECTIVE ONE-DIMENSIONAL COUPLED-WAVE
ANALYSIS: PERTURBATION AND DISTRIBUTED

FEEDBACK

We consider a line-defect photonic-crystal waveguide,
where part of the waveguide is active, as illustrated in Fig. 1.
The active material may be implemented as layers of quantum
wells or quantum dots embedded in the middle of the photonic-
crystal membrane. In order to limit the energy consumption,
it is preferable only to have active material in the core of the
waveguide, as demonstrated in [9]. Here, however, we consider
the simpler structure, where the membrane is uniformly active
in the transverse directions (xy). This is appropriate for the case
of optically pumped structures, as considered, for example, in
[7]. We represent the material gain as a weak perturbation to
the passive periodic PhC waveguide in a finite-length section
and use the Bloch modes of the passive structure to expand
the field of the structure including gain. In this formulation,
multiple scattering in the active PhC structure is represented
as material-gain-induced coupling between the forward- and
backward-propagating Bloch waves of the passive structure,

FIG. 2. (Color online) Illustration of coupled-wave analysis of
PhC waveguide. (a) Schematic of surface used in the derivation of
coupled mode equations, with arrows indicating outward unit normal
vectors to the boundary surface. (b) Schematic diagram of coupling
between the amplitudes of forward- and backward-propagating Bloch
waves induced by the active material, which is represented by an
imaginary perturbation of the refractive index.

as illustrated in the top part of Fig. 2(b). This is similar to the
way disorder is analyzed in [18].

In the continuous wave (cw) limit, the Maxwell equations
can be rewritten based on the conjugated form of the Lorentz
reciprocity theorem [17,32]:

∇ · (E × H∗
0,± + E∗

0,± × H) = iωPpert · E∗
0,±. (1)

Here, E0,± and H0,± are the guided Bloch wave solutions
of Maxwell equations for the electrical and magnetic fields
obtained in the absence of electronic polarization perturbations
Ppert, with ± denoting forward- or backward-propagating
fields. The fields E and H are the self-consistent solutions
in the presence of electronic polarization perturbations, which
arise due to the presence of active material, e.g., leading to
stimulated emission and thus gain of the propagating fields.
We may represent the unperturbed Bloch waves as follows:

E0,± = 1
2 e±(x,y,z) exp(±ikzz) exp(−iωt), (2)

H0,± = 1
2 h±(x,y,z) exp(±ikzz) exp(−iωt), (3)

with e±(x,y,z) and h±(x,y,z) being the normalized complex
amplitude Bloch functions, ω the frequency, and kz the Bloch
wave number along the length of the waveguide.

The unit rms power flux Pz and unit rms electric and
magnetic stored energy W in a supercell are given as

Pz = 1
2

∫

S

[Re{e × h∗} · ẑ] dS, (4)

W = 1
4

∫

V

[
ε0n

2
b(r)|e|2 + µ0|h|2

]
dV = angz

c
Pz. (5)

Here, ngz ≡ c/vgz is the group index, where c and vgz =
∂ω/∂kz are the speed of light and the group velocity, ε0 and
µ0 are the vacuum permittivity and permeability, nb(r) is the
background refractive index, a is the lattice constant of the
photonic crystal, S indicates the transverse plane at position z,
and V is the volume of a PhC supercell.
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Light-matter interactions in periodic structures can be
significantly enhanced in the presence of slow-light propa-
gation. This paradigm has led to several important discov-
eries and demonstrations, including the enhancement of
nonlinear effects [1–7], Purcell effects for light emission
[8], light localization [9], as well as slow-light enhanced
absorption and gain processes [10–14]. Loss is an inherent
part of any passive optical material, and the inclusion of
gain material is presently receiving widespread attention in
many different situations, ranging from the fundamental
interest in gain-compensation of inherently lossy metama-
terials [15–18] and spasing in plasmonic nanostructures
[19,20], to active nanophotonic devices such as low-
threshold lasers [21] and miniaturized optical amplifiers.
There is a common expectation that if a material with net
gain g0 is incorporated in a periodic medium, such as
Bragg stacks, photonic crystals (PhC) or metamaterials,
the gain will effectively be enhanced to geff " n0gg0, where
n0g is the group index associated with the underlying dis-
persion relation !0ðkÞ of the passive structure. In a device
context the gain enhancement is anticipated to allow
shrinking the structure by a factor equivalent to the group
index, while maintaining the same output performance.
However, this reasoning implicitly assumes that gain can
be added without considering its impact on !0ðkÞ—an
assumption that calls for a closer scrutiny.

In this Letter, we analyze the modification of the disper-
sion due to gain, and show that a large gain will eventually
jeopardize the desired slow-light dispersion supported by
the periodic system, thus suppressing the slow-light in-
duced light-matter interaction enhancement anticipated in
the first place. On the other hand, a small amount of
material gain is shown to beneficial. Thus, importantly,
devices employing quantum-dot gain material may display
a superior performance.

Early investigations emphasized simple one-
dimensional periodic media such as Bragg stacks in the
context of slow-light enhanced gain and low-threshold
band-edge lasing [22]. Likewise, the related phenomenon
of slow-light enhanced absorption was proposed as a route
to miniaturized Beer-Lambert sensing devices [11].
Slow-light enhancement thus appears to be a conceptual
solution to a wide range of fundamental problems involv-
ing inherently weak light-matter interactions or techno-
logical challenges calling for miniaturization or enhanced
performance. However, recent studies of linear absorption
[23,24] suggest that ng itself is also affected by the pres-
ence of loss. Likewise, the gain may also influence ng [25]
and analytical studies of coupled-resonator optical wave-
guides (CROW) show explicitly that the group index and
attenuation have to be treated on an equal footing and in a
self-consistent manner [26]. Here, we show that the same
considerations apply to gain, and illustrate the general
consequences with the aid of three examples. Recent stud-
ies on random scattering showed that fabrication disorder
leads to a loss that increases with the group index [27,28].
This effect imposes another limitation to the degree of light
slow-down that may be useful for the applications.
However, in contrast, the effect investigated here is intrin-
sic, and will impede the performance even of a perfectly
regular structure.
Coupled-resonator optical waveguide.—We consider

first a CROW formed by a linear chain of identical and
weakly coupled neighboring optical resonators (inset of
Fig. 1). In the frequency range of interest the individual
resonators support a single resonance at ! and when
coupled together they form a propagating mode with
dispersion relation [29]

!ðkÞ ¼ !ð1! ig0Þ½1! ! cosðkaÞ': (1)
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FIG. 4. (Color online) Propagation characteristics of a line-defect photonic-crystal waveguide with a gain section of finite length, L = 100a.
(a) Dispersion curve and (b) group index, both of passive PhC waveguide Bloch mode. (c) Power transmission and (d) power reflection, both
as functions of the imaginary part of the refractive index and frequency. The results in (c) and (d) are obtained by numerically solving the 1D
coupled Bloch wave equations.

number fulfilling the condition
(

π

a
− Re(kz)

)
2L = 2πm, m = integer. (18)

Taking into account saturation of the gain medium due to
stimulated emission, the divergences correspond to the onset of
self-sustained lasing, with the imaginary part of the refractive
index being clamped to its threshold value. Again, we notice
the similarity of these results with the classical analyses of
distributed feedback lasers [36] and active Bragg gratings [28].

For frequencies closer to the band gap, the resonances
appear at smaller gain values, consistent with the enhancement
of the gain per unit length due to slow-light propagation [7].
Notice that the gain per unit time inside the material is not
changed, with the consequence, for lasers, that it is only the
contribution of mirror losses to the laser threshold that is
decreased when exploiting a slow-light mode.

B. PhC waveguides with a short active section

In this section we consider a short active PhC waveguide
section, of length L = 20a, but allow for higher values of
the material gain coefficient in order to explore the regime
investigated in [23]. As the size of the 2D simulation
domain decreases, it becomes feasible to solve the periodic
optical waveguiding problem [40] in the frequency domain
using the finite-element method (FEM) with numerically
exact Bloch mode excitation and/or absorptive boundary
conditions [41].

Figure 5 shows the transmitted and reflected power flux
of an input cw light exciting a slow-light mode [ωa/(2πc) =
0.2075, ngz ≃ 18.7] as a function of the imaginary part of
the refractive index. The solid and dash-dotted lines are
obtained from the 1D coupled-wave equations, while the
markers are corresponding numerical results based on the 2D
FEM. The results are shown in both logarithmic and linear
scales in order to appreciate the differences between the two
approaches. We see that the coupled-wave analysis reproduces

most features seen in the full numerical FEM simulations
for values of material gain and absorption coefficient up to
4000 cm−1 (|ni | up to 0.05) at a wavelength of 1550 nm,
which is large compared to gain values typically obtained in
semiconductors. For smaller gain values, the shorter device
shows characteristics similar to the longer device, with the
absolute gain being smaller for the same gain coefficient. We
attribute the difference between the coupled-wave model and
the full numerical result to a change of the effective gain
coefficient appearing as the prefactor of #+ and #− in the
RHS of Eqs. (12) and (13). Thus, for a large absolute value
of the imaginary part of the refractive index (large gain or
absorption), the band structure is modified such that the group
index is reduced and thereby also the slow-light enhanced gain
and absorption. This is in agreement with the result obtained in
[23], where the band structure of an infinitely periodic structure
was analyzed. In that case, there is no effect of backscattering,
since a unidirectional Bloch wave of the active structure is
considered, but consistent with the results presented here the
slow-light enhancement was observed to decrease with the
absolute value of the material gain coefficient.

We interpret the gain-induced change of effective group
index (slow-light enhancement factor) as follows. The origin
of the photonic-crystal band gap is the destructive interference
of multiply scattered waves. However, in the presence of gain
(or absorption), the destructive interference is incomplete.
For a defect photonic-crystal waveguide, this means that the
band edge is smeared and the group index no longer diverges
when approaching the band edge. In consequence, there is
a gain-induced reduction of the group index, and thereby
a gain-induced reduction of the slow-light enhancement of
light-matter interaction.

In the example above we considered a relatively modest
group index of ≃18.7, but when approaching the band edge
further, the (passive) group index rapidly increases, and the
saturation effect discussed above becomes more apparent, i.e.,
it sets in at lower values of the absolute gain coefficient.
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Yaohui Chen, Jakob Rosenkrantz de Lasson, Niels Gregersen, and Jesper Mørk*

DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343,
DK-2800 Kongens Lyngby, Denmark

(Received 21 August 2015; published 17 November 2015)

We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission
properties of active semiconductor photonic-crystal waveguides. In such devices, slow-light propagation can be
used to enhance the material gain per unit length, enabling, for example, the realization of short optical amplifiers
compatible with photonic integration. The coupled-wave analysis is compared to numerical approaches based
on the Fourier modal method and a frequency domain finite-element technique. The presence of material gain
leads to the buildup of a backscattered field, which is interpreted as distributed feedback effects or reflection at
passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure
of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.

DOI: 10.1103/PhysRevA.92.053839 PACS number(s): 42.55.Px, 42.55.Tv, 42.70.Qs

I. INTRODUCTION

Photonic-crystal (PhC) structures have been proposed as a
waveguide infrastructure for high-density photonic integrated
circuits [1–3]. Optical amplification is one of the fundamental
functionalities required for compensating attenuation and
coupling losses and thus scaling up the number of integrated
devices [4]. A major advantage of using photonic-crystal
waveguides, as opposed to standard ridge-type waveguides,
when realizing active structures with embedded semiconductor
gain layers is the use of slow-light effects to enhance light-
matter interactions. Thus, the spatial gain coefficient may be
increased by exploiting slow-light propagation, enabling the
realization of short devices suitable for photonic integration
[5–7]. Similarly, nonlinear effects induced by carrier depletion
may also be enhanced, leading to devices with ultralow
saturation power, which may be of interest for optical signal
processing applications [8].

In this work, we theoretically investigate the frequency-
domain optical propagation properties of an active PhC
waveguide of finite length embedded in an ideal passive
periodic PhC waveguide platform as shown in Fig. 1. Such
structures with site-controlled active gain sections may be
fabricated using different techniques [9–12].

As shown in Fig. 1, we approximate the device as a
photonic-crystal heterostucture [13] with a slowly varying
envelope of the imaginary part of the refractive index (bottom
part) and a fast periodic variation that naturally arises from the
penetration of the air holes through the gain layer (top part).
Such an envelope approximation in photonic-crystal devices
is analogous to the treatment of semiconductor optoelectronic
devices. Based on a perturbative approach [14], effective
one-dimensional (1D) coupled-wave analysis has been widely
used to investigate the impact of slow-light effects on optical
properties of passive PhC waveguides, e.g., for efficient taper
design [15], Kerr nonlinearities [16,17], and disorder-induced
scattering [18,19].

*jesm@fotonik.dtu.dk

FIG. 1. (Color online) Illustration of defect photonic-crystal
waveguide. The red part of the structure is active, i.e., this part of
the membrane structure contains embedded layers of quantum wells
or quantum dots that may provide gain upon optical or electrical
pumping. The lattice constant is a and the length of the active region
is L.

For perfectly periodic PhC waveguides, neglecting Kerr
nonlinearity and disorder, a rigorous set of equations for
the amplitudes of forward- and backward-propagating un-
perturbed Bloch waves may be derived [20]. In such a
formulation, the presence of active material in a finite
section of the PhC waveguide leads to multiple scattering,
which represents material-gain-induced coupling between the
forward and backward Bloch waves of passive structures. Such
distributed feedback (DFB) effects have so far not been consid-
ered in slow-light enhanced semiconductor optical amplifiers
[7,21–23]. We show here that it is important to consider the
impact of such feedback effects when calculating the gain of
an active PhC waveguide.

Alternatively, we may treat the structure as multiple
waveguide sections, namely an active PhC waveguide section
interfaced with two semi-infinite passive PhC waveguides
on both sides, with distinct sets of Bloch modes in the
passive and active PhC waveguide sections. In this picture, the
active-passive interfaces induce reflections, and Fabry-Pérot
effects are important in determining the strength of the
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In the limit of a weak electronic perturbation, we express
the self-consistent solutions as superpositions of the guided
Bloch waves for the passive structure, with slowly varying
amplitudes ψ±(z):

E ≃ ψ+(z)E0,+ + ψ−(z)E0,−, (6)

H ≃ ψ+(z)H0,+ + ψ−(z)H0,−. (7)

By using Eqs. (2), (3), (6), and (7), Eq. (1) can be formulated
as a set of continuity equations for the forward- and backward-
propagating amplitudes:

± 1
2∇ · [ψ±(z)Re{e × h∗}] = iωPpert · E∗

0,±. (8)

Equation (8) can be derived using the divergence theorem for
a closed surface S enclosing the simulation domain:

± 1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS = iω

∫

V

(Ppert · E∗
0,±) dV .

(9)

Here, n̂ is the outward unit normal vector of the closed surface
depicted in Fig. 2(a). This closed surface can be chosen
conveniently to comply with the experimental geometry
considered (near-field measurement [33] or transmission mea-
surement [34]), as well as the simulation domain and boundary
conditions (BCs) (e.g., periodic BCs [35] or perfectly matched
layer (PML) BCs [25]). The left-hand side (LHS) of Eq. (8)
describes the possible channels for the power flux in or out
of the surface and the right-hand side (RHS) describes the
source term. Equation (9) is in the form of a set of implicit
integral equations. Assuming that the considered modes are
transversely confined, the surface integral [LHS of Eq. (9)]
reduces to two integrals between the planes z = 0 and z = L,
described as

±1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS

≃ ±
∫ L

0
∂zψ±(z) dz × 1

2

∫

S

[Re{e × h∗} · ẑ] dS. (10)

For simplicity, we describe the carrier-induced complex
susceptibility perturbation as a product of a complex constant
χpert and an active material distribution function F (r):

Ppert = 1
2ε0χpertF (r)E, (11)

where F (r) = 1 (= 0) in the active (passive) region.
We now obtain the coupled-mode equations from Eq. (9)

with substitution from Eqs. (10) and (11):

∂zψ+(z) = iω

c
ngzχpert[δ(z)ψ+ + κ∗(z)e−i2kzzψ−], (12)

∂zψ−(z) = − iω

c
ngzχpert[δ(z)ψ− + κ(z)ei2kzzψ+], (13)

with

δ(z) ≡
a

∫
S
[ε0F (r)|e|2] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

, (14)

κ(z) ≡
a

∫
S
[ε0F (r)e · e] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

. (15)

Here, δ(z) and κ(z) denote the complex-valued propagation
and backscattering coefficient induced by the perturbation due
to the active material. The above 1D coupled-wave equations
are mathematically equivalent to a 2 × 2 scattering matrix
problem in a stack of thin films (at each z coordinate) and
readily solved numerically.

We note the similarity of the above coupled-mode equa-
tions with the coupled-mode equations originally derived by
Kogelnik and Shank for distributed feedback lasers [36].
However, while those equations describe the slow variation
of the complex amplitudes of plane waves (see also [37] for
application to PhC waveguides), Eqs. (12) and (13) describe
the slowly varying amplitudes of the Bloch waves of the
corresponding passive PhC. This has the consequence that in
the absence of a polarization perturbation, i.e., χpert = 0, the
forward and backward Bloch waves do not couple but remain
unidirectionally propagating waves, as required. The presence
of a perturbation, however, leads to coupling of the Bloch
waves, since the material perturbation gives rise to distributed
feedback. This is analogous to the scattering between Bloch
waves induced by structural disorder [18], although in that
case the backscattering sites are randomly distributed.

In general, the harmonic term exp(±i2kzz) leads to rela-
tively low backscattering efficiency due to phase mismatch
between forward- and backward-propagating Bloch waves.
Propagation losses decrease the effective propagation length
and further damp the backscattering. In passive PhC waveg-
uides, one can integrate similar coupled-mode equations
approximately by neglecting the distributed feedback terms
as long as the backscattered power is weak [15]. On the other
hand, in the case of positive gain, the effective length, over
which wave interaction takes place, increases, and a significant
backscattered wave may be built up, as we show here.

Equations (12) and (13) must be supplemented by boundary
conditions at the passive-active interfaces. The boundary
conditions [38] are

ψ+(0) = r1ψ−(0) + ψ0, (16)

ψ−(L) exp(−ikzL) = r2ψ+(L) exp(ikzL), (17)

where r1 and r2 are the amplitude reflectivities of the left
and right passive-active interfaces and ψ0 = 1 indicates unity
incident field from the left interface.

Finally, we note that the coupled-wave approach presented
here permits the inclusion of disorder-induced losses [18,19]
and carrier dynamics [8], which is beyond the scope of this
paper.

III. SIMULATION RESULTS

For the numerical investigations, we consider a two-
dimensional (2D) triangular lattice of air holes (hole radius
r = 0.25a) embedded in a semiconductor membrane with a
dielectric constant of n2

s = 12.1. The waveguide is a W1 line
defect with a single row of air holes omitted. The presence
of material gain or absorption is modeled via an imaginary
refractive index perturbation ni , corresponding to a material
gain g0 = −2niω/c. The corresponding susceptibility pertur-
bation is χpert = −n2

i + i2nsni . In practice, the value of the
gain coefficient is controlled via the charge-carrier density. We
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signal transmitted from the input to the output waveguide
as well as the back-reflected signal. We solve the optical
multiple-scattering problem in aggregates of generalized thin
films using the Fourier modal method (FMM) [or rigorous
coupled wave analysis (RCWA)] [24–26], which has been
widely implemented for various periodic photonic structures.
Using these methods, Bloch waves are computed and sorted
in both passive and active PhC sections [27].

In the following, we numerically validate that both ap-
proaches are equivalent in analyzing the proposed active
PhC devices. A similar discussion for active Bragg grating
structures can be found in [28]. We also analyze the situation
with very large material gain values, in which case the band
structure of the photonic-crystal structure is modified.

Here we limit our attention to the simplest type of photonic-
crystal waveguide, with one row of missing holes (W1
waveguide). In that case, slow-light propagation is realized
close to the Brillouin zone edge and the bandwidth over
which significant slowdown effects are realized is limited.
It was shown, though, that by dispersion engineering the
waveguide, a slow-light region of significant bandwidth can be
obtained for a frequency range displaced from the band edge
[29]. A systematic approach for optimizing the group index
bandwidth product was recently demonstrated [30]. For such
dispersion-engineered structures, the large group index region
may be centered around an inflection point of the dispersion
curves and it was shown that strong loss (or gain) can induce
drastic changes of the dispersion curves [31].

The paper is organized as follows: In Sec. II we derive
the coupled Bloch wave equations. Section III presents the
numerical results. We first consider a long waveguide with
relatively weak gain, and compare the coupled-wave analysis
to numerical results obtained using the FMM. Second, we
consider a shorter waveguide, enabling the consideration of
larger absolute gain coefficients as well as the use of a finite-
element numerical technique. Finally, the main conclusions
are summarized in Sec. IV.

II. EFFECTIVE ONE-DIMENSIONAL COUPLED-WAVE
ANALYSIS: PERTURBATION AND DISTRIBUTED

FEEDBACK

We consider a line-defect photonic-crystal waveguide,
where part of the waveguide is active, as illustrated in Fig. 1.
The active material may be implemented as layers of quantum
wells or quantum dots embedded in the middle of the photonic-
crystal membrane. In order to limit the energy consumption,
it is preferable only to have active material in the core of the
waveguide, as demonstrated in [9]. Here, however, we consider
the simpler structure, where the membrane is uniformly active
in the transverse directions (xy). This is appropriate for the case
of optically pumped structures, as considered, for example, in
[7]. We represent the material gain as a weak perturbation to
the passive periodic PhC waveguide in a finite-length section
and use the Bloch modes of the passive structure to expand
the field of the structure including gain. In this formulation,
multiple scattering in the active PhC structure is represented
as material-gain-induced coupling between the forward- and
backward-propagating Bloch waves of the passive structure,

FIG. 2. (Color online) Illustration of coupled-wave analysis of
PhC waveguide. (a) Schematic of surface used in the derivation of
coupled mode equations, with arrows indicating outward unit normal
vectors to the boundary surface. (b) Schematic diagram of coupling
between the amplitudes of forward- and backward-propagating Bloch
waves induced by the active material, which is represented by an
imaginary perturbation of the refractive index.

as illustrated in the top part of Fig. 2(b). This is similar to the
way disorder is analyzed in [18].

In the continuous wave (cw) limit, the Maxwell equations
can be rewritten based on the conjugated form of the Lorentz
reciprocity theorem [17,32]:

∇ · (E × H∗
0,± + E∗

0,± × H) = iωPpert · E∗
0,±. (1)

Here, E0,± and H0,± are the guided Bloch wave solutions
of Maxwell equations for the electrical and magnetic fields
obtained in the absence of electronic polarization perturbations
Ppert, with ± denoting forward- or backward-propagating
fields. The fields E and H are the self-consistent solutions
in the presence of electronic polarization perturbations, which
arise due to the presence of active material, e.g., leading to
stimulated emission and thus gain of the propagating fields.
We may represent the unperturbed Bloch waves as follows:

E0,± = 1
2 e±(x,y,z) exp(±ikzz) exp(−iωt), (2)

H0,± = 1
2 h±(x,y,z) exp(±ikzz) exp(−iωt), (3)

with e±(x,y,z) and h±(x,y,z) being the normalized complex
amplitude Bloch functions, ω the frequency, and kz the Bloch
wave number along the length of the waveguide.

The unit rms power flux Pz and unit rms electric and
magnetic stored energy W in a supercell are given as

Pz = 1
2

∫

S

[Re{e × h∗} · ẑ] dS, (4)

W = 1
4

∫

V

[
ε0n

2
b(r)|e|2 + µ0|h|2

]
dV = angz

c
Pz. (5)

Here, ngz ≡ c/vgz is the group index, where c and vgz =
∂ω/∂kz are the speed of light and the group velocity, ε0 and
µ0 are the vacuum permittivity and permeability, nb(r) is the
background refractive index, a is the lattice constant of the
photonic crystal, S indicates the transverse plane at position z,
and V is the volume of a PhC supercell.
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Jure Grgić,1 Johan Raunkjær Ott,1 Fengwen Wang,2 Ole Sigmund,2 Antti-Pekka Jauho,3

Jesper Mørk,1 and N. Asger Mortensen1,*
1DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

2DTU Mekanik, Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark,
DK-2800 Kongens Lyngby, Denmark

3DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
(Received 21 November 2011; published 4 May 2012)

A common strategy to compensate for losses in optical nanostructures is to add gain material in the

system. By exploiting slow-light effects it is expected that the gain may be enhanced beyond its bulk

value. Here we show that this route cannot be followed uncritically: inclusion of gain inevitably modifies

the underlying dispersion law, and thereby may degrade the slow-light properties underlying the device

operation and the anticipated gain enhancement itself. This degradation is generic; we demonstrate it for

three different systems of current interest (coupled-resonator optical waveguides, Bragg stacks, and

photonic crystal waveguides). Nevertheless, a small amount of added gain may be beneficial.
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Light-matter interactions in periodic structures can be
significantly enhanced in the presence of slow-light propa-
gation. This paradigm has led to several important discov-
eries and demonstrations, including the enhancement of
nonlinear effects [1–7], Purcell effects for light emission
[8], light localization [9], as well as slow-light enhanced
absorption and gain processes [10–14]. Loss is an inherent
part of any passive optical material, and the inclusion of
gain material is presently receiving widespread attention in
many different situations, ranging from the fundamental
interest in gain-compensation of inherently lossy metama-
terials [15–18] and spasing in plasmonic nanostructures
[19,20], to active nanophotonic devices such as low-
threshold lasers [21] and miniaturized optical amplifiers.
There is a common expectation that if a material with net
gain g0 is incorporated in a periodic medium, such as
Bragg stacks, photonic crystals (PhC) or metamaterials,
the gain will effectively be enhanced to geff " n0gg0, where
n0g is the group index associated with the underlying dis-
persion relation !0ðkÞ of the passive structure. In a device
context the gain enhancement is anticipated to allow
shrinking the structure by a factor equivalent to the group
index, while maintaining the same output performance.
However, this reasoning implicitly assumes that gain can
be added without considering its impact on !0ðkÞ—an
assumption that calls for a closer scrutiny.

In this Letter, we analyze the modification of the disper-
sion due to gain, and show that a large gain will eventually
jeopardize the desired slow-light dispersion supported by
the periodic system, thus suppressing the slow-light in-
duced light-matter interaction enhancement anticipated in
the first place. On the other hand, a small amount of
material gain is shown to beneficial. Thus, importantly,
devices employing quantum-dot gain material may display
a superior performance.

Early investigations emphasized simple one-
dimensional periodic media such as Bragg stacks in the
context of slow-light enhanced gain and low-threshold
band-edge lasing [22]. Likewise, the related phenomenon
of slow-light enhanced absorption was proposed as a route
to miniaturized Beer-Lambert sensing devices [11].
Slow-light enhancement thus appears to be a conceptual
solution to a wide range of fundamental problems involv-
ing inherently weak light-matter interactions or techno-
logical challenges calling for miniaturization or enhanced
performance. However, recent studies of linear absorption
[23,24] suggest that ng itself is also affected by the pres-
ence of loss. Likewise, the gain may also influence ng [25]
and analytical studies of coupled-resonator optical wave-
guides (CROW) show explicitly that the group index and
attenuation have to be treated on an equal footing and in a
self-consistent manner [26]. Here, we show that the same
considerations apply to gain, and illustrate the general
consequences with the aid of three examples. Recent stud-
ies on random scattering showed that fabrication disorder
leads to a loss that increases with the group index [27,28].
This effect imposes another limitation to the degree of light
slow-down that may be useful for the applications.
However, in contrast, the effect investigated here is intrin-
sic, and will impede the performance even of a perfectly
regular structure.
Coupled-resonator optical waveguide.—We consider

first a CROW formed by a linear chain of identical and
weakly coupled neighboring optical resonators (inset of
Fig. 1). In the frequency range of interest the individual
resonators support a single resonance at ! and when
coupled together they form a propagating mode with
dispersion relation [29]

!ðkÞ ¼ !ð1! ig0Þ½1! ! cosðkaÞ': (1)
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FIG. 4. (Color online) Propagation characteristics of a line-defect photonic-crystal waveguide with a gain section of finite length, L = 100a.
(a) Dispersion curve and (b) group index, both of passive PhC waveguide Bloch mode. (c) Power transmission and (d) power reflection, both
as functions of the imaginary part of the refractive index and frequency. The results in (c) and (d) are obtained by numerically solving the 1D
coupled Bloch wave equations.

number fulfilling the condition
(

π

a
− Re(kz)

)
2L = 2πm, m = integer. (18)

Taking into account saturation of the gain medium due to
stimulated emission, the divergences correspond to the onset of
self-sustained lasing, with the imaginary part of the refractive
index being clamped to its threshold value. Again, we notice
the similarity of these results with the classical analyses of
distributed feedback lasers [36] and active Bragg gratings [28].

For frequencies closer to the band gap, the resonances
appear at smaller gain values, consistent with the enhancement
of the gain per unit length due to slow-light propagation [7].
Notice that the gain per unit time inside the material is not
changed, with the consequence, for lasers, that it is only the
contribution of mirror losses to the laser threshold that is
decreased when exploiting a slow-light mode.

B. PhC waveguides with a short active section

In this section we consider a short active PhC waveguide
section, of length L = 20a, but allow for higher values of
the material gain coefficient in order to explore the regime
investigated in [23]. As the size of the 2D simulation
domain decreases, it becomes feasible to solve the periodic
optical waveguiding problem [40] in the frequency domain
using the finite-element method (FEM) with numerically
exact Bloch mode excitation and/or absorptive boundary
conditions [41].

Figure 5 shows the transmitted and reflected power flux
of an input cw light exciting a slow-light mode [ωa/(2πc) =
0.2075, ngz ≃ 18.7] as a function of the imaginary part of
the refractive index. The solid and dash-dotted lines are
obtained from the 1D coupled-wave equations, while the
markers are corresponding numerical results based on the 2D
FEM. The results are shown in both logarithmic and linear
scales in order to appreciate the differences between the two
approaches. We see that the coupled-wave analysis reproduces

most features seen in the full numerical FEM simulations
for values of material gain and absorption coefficient up to
4000 cm−1 (|ni | up to 0.05) at a wavelength of 1550 nm,
which is large compared to gain values typically obtained in
semiconductors. For smaller gain values, the shorter device
shows characteristics similar to the longer device, with the
absolute gain being smaller for the same gain coefficient. We
attribute the difference between the coupled-wave model and
the full numerical result to a change of the effective gain
coefficient appearing as the prefactor of #+ and #− in the
RHS of Eqs. (12) and (13). Thus, for a large absolute value
of the imaginary part of the refractive index (large gain or
absorption), the band structure is modified such that the group
index is reduced and thereby also the slow-light enhanced gain
and absorption. This is in agreement with the result obtained in
[23], where the band structure of an infinitely periodic structure
was analyzed. In that case, there is no effect of backscattering,
since a unidirectional Bloch wave of the active structure is
considered, but consistent with the results presented here the
slow-light enhancement was observed to decrease with the
absolute value of the material gain coefficient.

We interpret the gain-induced change of effective group
index (slow-light enhancement factor) as follows. The origin
of the photonic-crystal band gap is the destructive interference
of multiply scattered waves. However, in the presence of gain
(or absorption), the destructive interference is incomplete.
For a defect photonic-crystal waveguide, this means that the
band edge is smeared and the group index no longer diverges
when approaching the band edge. In consequence, there is
a gain-induced reduction of the group index, and thereby
a gain-induced reduction of the slow-light enhancement of
light-matter interaction.

In the example above we considered a relatively modest
group index of ≃18.7, but when approaching the band edge
further, the (passive) group index rapidly increases, and the
saturation effect discussed above becomes more apparent, i.e.,
it sets in at lower values of the absolute gain coefficient.
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We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission
properties of active semiconductor photonic-crystal waveguides. In such devices, slow-light propagation can be
used to enhance the material gain per unit length, enabling, for example, the realization of short optical amplifiers
compatible with photonic integration. The coupled-wave analysis is compared to numerical approaches based
on the Fourier modal method and a frequency domain finite-element technique. The presence of material gain
leads to the buildup of a backscattered field, which is interpreted as distributed feedback effects or reflection at
passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure
of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.
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I. INTRODUCTION

Photonic-crystal (PhC) structures have been proposed as a
waveguide infrastructure for high-density photonic integrated
circuits [1–3]. Optical amplification is one of the fundamental
functionalities required for compensating attenuation and
coupling losses and thus scaling up the number of integrated
devices [4]. A major advantage of using photonic-crystal
waveguides, as opposed to standard ridge-type waveguides,
when realizing active structures with embedded semiconductor
gain layers is the use of slow-light effects to enhance light-
matter interactions. Thus, the spatial gain coefficient may be
increased by exploiting slow-light propagation, enabling the
realization of short devices suitable for photonic integration
[5–7]. Similarly, nonlinear effects induced by carrier depletion
may also be enhanced, leading to devices with ultralow
saturation power, which may be of interest for optical signal
processing applications [8].

In this work, we theoretically investigate the frequency-
domain optical propagation properties of an active PhC
waveguide of finite length embedded in an ideal passive
periodic PhC waveguide platform as shown in Fig. 1. Such
structures with site-controlled active gain sections may be
fabricated using different techniques [9–12].

As shown in Fig. 1, we approximate the device as a
photonic-crystal heterostucture [13] with a slowly varying
envelope of the imaginary part of the refractive index (bottom
part) and a fast periodic variation that naturally arises from the
penetration of the air holes through the gain layer (top part).
Such an envelope approximation in photonic-crystal devices
is analogous to the treatment of semiconductor optoelectronic
devices. Based on a perturbative approach [14], effective
one-dimensional (1D) coupled-wave analysis has been widely
used to investigate the impact of slow-light effects on optical
properties of passive PhC waveguides, e.g., for efficient taper
design [15], Kerr nonlinearities [16,17], and disorder-induced
scattering [18,19].

*jesm@fotonik.dtu.dk

FIG. 1. (Color online) Illustration of defect photonic-crystal
waveguide. The red part of the structure is active, i.e., this part of
the membrane structure contains embedded layers of quantum wells
or quantum dots that may provide gain upon optical or electrical
pumping. The lattice constant is a and the length of the active region
is L.

For perfectly periodic PhC waveguides, neglecting Kerr
nonlinearity and disorder, a rigorous set of equations for
the amplitudes of forward- and backward-propagating un-
perturbed Bloch waves may be derived [20]. In such a
formulation, the presence of active material in a finite
section of the PhC waveguide leads to multiple scattering,
which represents material-gain-induced coupling between the
forward and backward Bloch waves of passive structures. Such
distributed feedback (DFB) effects have so far not been consid-
ered in slow-light enhanced semiconductor optical amplifiers
[7,21–23]. We show here that it is important to consider the
impact of such feedback effects when calculating the gain of
an active PhC waveguide.

Alternatively, we may treat the structure as multiple
waveguide sections, namely an active PhC waveguide section
interfaced with two semi-infinite passive PhC waveguides
on both sides, with distinct sets of Bloch modes in the
passive and active PhC waveguide sections. In this picture, the
active-passive interfaces induce reflections, and Fabry-Pérot
effects are important in determining the strength of the
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In the limit of a weak electronic perturbation, we express
the self-consistent solutions as superpositions of the guided
Bloch waves for the passive structure, with slowly varying
amplitudes ψ±(z):

E ≃ ψ+(z)E0,+ + ψ−(z)E0,−, (6)

H ≃ ψ+(z)H0,+ + ψ−(z)H0,−. (7)

By using Eqs. (2), (3), (6), and (7), Eq. (1) can be formulated
as a set of continuity equations for the forward- and backward-
propagating amplitudes:

± 1
2∇ · [ψ±(z)Re{e × h∗}] = iωPpert · E∗

0,±. (8)

Equation (8) can be derived using the divergence theorem for
a closed surface S enclosing the simulation domain:

± 1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS = iω

∫

V

(Ppert · E∗
0,±) dV .

(9)

Here, n̂ is the outward unit normal vector of the closed surface
depicted in Fig. 2(a). This closed surface can be chosen
conveniently to comply with the experimental geometry
considered (near-field measurement [33] or transmission mea-
surement [34]), as well as the simulation domain and boundary
conditions (BCs) (e.g., periodic BCs [35] or perfectly matched
layer (PML) BCs [25]). The left-hand side (LHS) of Eq. (8)
describes the possible channels for the power flux in or out
of the surface and the right-hand side (RHS) describes the
source term. Equation (9) is in the form of a set of implicit
integral equations. Assuming that the considered modes are
transversely confined, the surface integral [LHS of Eq. (9)]
reduces to two integrals between the planes z = 0 and z = L,
described as

±1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS

≃ ±
∫ L

0
∂zψ±(z) dz × 1

2

∫

S

[Re{e × h∗} · ẑ] dS. (10)

For simplicity, we describe the carrier-induced complex
susceptibility perturbation as a product of a complex constant
χpert and an active material distribution function F (r):

Ppert = 1
2ε0χpertF (r)E, (11)

where F (r) = 1 (= 0) in the active (passive) region.
We now obtain the coupled-mode equations from Eq. (9)

with substitution from Eqs. (10) and (11):

∂zψ+(z) = iω

c
ngzχpert[δ(z)ψ+ + κ∗(z)e−i2kzzψ−], (12)

∂zψ−(z) = − iω

c
ngzχpert[δ(z)ψ− + κ(z)ei2kzzψ+], (13)

with

δ(z) ≡
a

∫
S
[ε0F (r)|e|2] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

, (14)

κ(z) ≡
a

∫
S
[ε0F (r)e · e] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

. (15)

Here, δ(z) and κ(z) denote the complex-valued propagation
and backscattering coefficient induced by the perturbation due
to the active material. The above 1D coupled-wave equations
are mathematically equivalent to a 2 × 2 scattering matrix
problem in a stack of thin films (at each z coordinate) and
readily solved numerically.

We note the similarity of the above coupled-mode equa-
tions with the coupled-mode equations originally derived by
Kogelnik and Shank for distributed feedback lasers [36].
However, while those equations describe the slow variation
of the complex amplitudes of plane waves (see also [37] for
application to PhC waveguides), Eqs. (12) and (13) describe
the slowly varying amplitudes of the Bloch waves of the
corresponding passive PhC. This has the consequence that in
the absence of a polarization perturbation, i.e., χpert = 0, the
forward and backward Bloch waves do not couple but remain
unidirectionally propagating waves, as required. The presence
of a perturbation, however, leads to coupling of the Bloch
waves, since the material perturbation gives rise to distributed
feedback. This is analogous to the scattering between Bloch
waves induced by structural disorder [18], although in that
case the backscattering sites are randomly distributed.

In general, the harmonic term exp(±i2kzz) leads to rela-
tively low backscattering efficiency due to phase mismatch
between forward- and backward-propagating Bloch waves.
Propagation losses decrease the effective propagation length
and further damp the backscattering. In passive PhC waveg-
uides, one can integrate similar coupled-mode equations
approximately by neglecting the distributed feedback terms
as long as the backscattered power is weak [15]. On the other
hand, in the case of positive gain, the effective length, over
which wave interaction takes place, increases, and a significant
backscattered wave may be built up, as we show here.

Equations (12) and (13) must be supplemented by boundary
conditions at the passive-active interfaces. The boundary
conditions [38] are

ψ+(0) = r1ψ−(0) + ψ0, (16)

ψ−(L) exp(−ikzL) = r2ψ+(L) exp(ikzL), (17)

where r1 and r2 are the amplitude reflectivities of the left
and right passive-active interfaces and ψ0 = 1 indicates unity
incident field from the left interface.

Finally, we note that the coupled-wave approach presented
here permits the inclusion of disorder-induced losses [18,19]
and carrier dynamics [8], which is beyond the scope of this
paper.

III. SIMULATION RESULTS

For the numerical investigations, we consider a two-
dimensional (2D) triangular lattice of air holes (hole radius
r = 0.25a) embedded in a semiconductor membrane with a
dielectric constant of n2

s = 12.1. The waveguide is a W1 line
defect with a single row of air holes omitted. The presence
of material gain or absorption is modeled via an imaginary
refractive index perturbation ni , corresponding to a material
gain g0 = −2niω/c. The corresponding susceptibility pertur-
bation is χpert = −n2

i + i2nsni . In practice, the value of the
gain coefficient is controlled via the charge-carrier density. We
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signal transmitted from the input to the output waveguide
as well as the back-reflected signal. We solve the optical
multiple-scattering problem in aggregates of generalized thin
films using the Fourier modal method (FMM) [or rigorous
coupled wave analysis (RCWA)] [24–26], which has been
widely implemented for various periodic photonic structures.
Using these methods, Bloch waves are computed and sorted
in both passive and active PhC sections [27].

In the following, we numerically validate that both ap-
proaches are equivalent in analyzing the proposed active
PhC devices. A similar discussion for active Bragg grating
structures can be found in [28]. We also analyze the situation
with very large material gain values, in which case the band
structure of the photonic-crystal structure is modified.

Here we limit our attention to the simplest type of photonic-
crystal waveguide, with one row of missing holes (W1
waveguide). In that case, slow-light propagation is realized
close to the Brillouin zone edge and the bandwidth over
which significant slowdown effects are realized is limited.
It was shown, though, that by dispersion engineering the
waveguide, a slow-light region of significant bandwidth can be
obtained for a frequency range displaced from the band edge
[29]. A systematic approach for optimizing the group index
bandwidth product was recently demonstrated [30]. For such
dispersion-engineered structures, the large group index region
may be centered around an inflection point of the dispersion
curves and it was shown that strong loss (or gain) can induce
drastic changes of the dispersion curves [31].

The paper is organized as follows: In Sec. II we derive
the coupled Bloch wave equations. Section III presents the
numerical results. We first consider a long waveguide with
relatively weak gain, and compare the coupled-wave analysis
to numerical results obtained using the FMM. Second, we
consider a shorter waveguide, enabling the consideration of
larger absolute gain coefficients as well as the use of a finite-
element numerical technique. Finally, the main conclusions
are summarized in Sec. IV.

II. EFFECTIVE ONE-DIMENSIONAL COUPLED-WAVE
ANALYSIS: PERTURBATION AND DISTRIBUTED

FEEDBACK

We consider a line-defect photonic-crystal waveguide,
where part of the waveguide is active, as illustrated in Fig. 1.
The active material may be implemented as layers of quantum
wells or quantum dots embedded in the middle of the photonic-
crystal membrane. In order to limit the energy consumption,
it is preferable only to have active material in the core of the
waveguide, as demonstrated in [9]. Here, however, we consider
the simpler structure, where the membrane is uniformly active
in the transverse directions (xy). This is appropriate for the case
of optically pumped structures, as considered, for example, in
[7]. We represent the material gain as a weak perturbation to
the passive periodic PhC waveguide in a finite-length section
and use the Bloch modes of the passive structure to expand
the field of the structure including gain. In this formulation,
multiple scattering in the active PhC structure is represented
as material-gain-induced coupling between the forward- and
backward-propagating Bloch waves of the passive structure,

FIG. 2. (Color online) Illustration of coupled-wave analysis of
PhC waveguide. (a) Schematic of surface used in the derivation of
coupled mode equations, with arrows indicating outward unit normal
vectors to the boundary surface. (b) Schematic diagram of coupling
between the amplitudes of forward- and backward-propagating Bloch
waves induced by the active material, which is represented by an
imaginary perturbation of the refractive index.

as illustrated in the top part of Fig. 2(b). This is similar to the
way disorder is analyzed in [18].

In the continuous wave (cw) limit, the Maxwell equations
can be rewritten based on the conjugated form of the Lorentz
reciprocity theorem [17,32]:

∇ · (E × H∗
0,± + E∗

0,± × H) = iωPpert · E∗
0,±. (1)

Here, E0,± and H0,± are the guided Bloch wave solutions
of Maxwell equations for the electrical and magnetic fields
obtained in the absence of electronic polarization perturbations
Ppert, with ± denoting forward- or backward-propagating
fields. The fields E and H are the self-consistent solutions
in the presence of electronic polarization perturbations, which
arise due to the presence of active material, e.g., leading to
stimulated emission and thus gain of the propagating fields.
We may represent the unperturbed Bloch waves as follows:

E0,± = 1
2 e±(x,y,z) exp(±ikzz) exp(−iωt), (2)

H0,± = 1
2 h±(x,y,z) exp(±ikzz) exp(−iωt), (3)

with e±(x,y,z) and h±(x,y,z) being the normalized complex
amplitude Bloch functions, ω the frequency, and kz the Bloch
wave number along the length of the waveguide.

The unit rms power flux Pz and unit rms electric and
magnetic stored energy W in a supercell are given as

Pz = 1
2

∫

S

[Re{e × h∗} · ẑ] dS, (4)

W = 1
4

∫

V

[
ε0n

2
b(r)|e|2 + µ0|h|2

]
dV = angz

c
Pz. (5)

Here, ngz ≡ c/vgz is the group index, where c and vgz =
∂ω/∂kz are the speed of light and the group velocity, ε0 and
µ0 are the vacuum permittivity and permeability, nb(r) is the
background refractive index, a is the lattice constant of the
photonic crystal, S indicates the transverse plane at position z,
and V is the volume of a PhC supercell.
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Light-matter interactions in periodic structures can be
significantly enhanced in the presence of slow-light propa-
gation. This paradigm has led to several important discov-
eries and demonstrations, including the enhancement of
nonlinear effects [1–7], Purcell effects for light emission
[8], light localization [9], as well as slow-light enhanced
absorption and gain processes [10–14]. Loss is an inherent
part of any passive optical material, and the inclusion of
gain material is presently receiving widespread attention in
many different situations, ranging from the fundamental
interest in gain-compensation of inherently lossy metama-
terials [15–18] and spasing in plasmonic nanostructures
[19,20], to active nanophotonic devices such as low-
threshold lasers [21] and miniaturized optical amplifiers.
There is a common expectation that if a material with net
gain g0 is incorporated in a periodic medium, such as
Bragg stacks, photonic crystals (PhC) or metamaterials,
the gain will effectively be enhanced to geff " n0gg0, where
n0g is the group index associated with the underlying dis-
persion relation !0ðkÞ of the passive structure. In a device
context the gain enhancement is anticipated to allow
shrinking the structure by a factor equivalent to the group
index, while maintaining the same output performance.
However, this reasoning implicitly assumes that gain can
be added without considering its impact on !0ðkÞ—an
assumption that calls for a closer scrutiny.

In this Letter, we analyze the modification of the disper-
sion due to gain, and show that a large gain will eventually
jeopardize the desired slow-light dispersion supported by
the periodic system, thus suppressing the slow-light in-
duced light-matter interaction enhancement anticipated in
the first place. On the other hand, a small amount of
material gain is shown to beneficial. Thus, importantly,
devices employing quantum-dot gain material may display
a superior performance.

Early investigations emphasized simple one-
dimensional periodic media such as Bragg stacks in the
context of slow-light enhanced gain and low-threshold
band-edge lasing [22]. Likewise, the related phenomenon
of slow-light enhanced absorption was proposed as a route
to miniaturized Beer-Lambert sensing devices [11].
Slow-light enhancement thus appears to be a conceptual
solution to a wide range of fundamental problems involv-
ing inherently weak light-matter interactions or techno-
logical challenges calling for miniaturization or enhanced
performance. However, recent studies of linear absorption
[23,24] suggest that ng itself is also affected by the pres-
ence of loss. Likewise, the gain may also influence ng [25]
and analytical studies of coupled-resonator optical wave-
guides (CROW) show explicitly that the group index and
attenuation have to be treated on an equal footing and in a
self-consistent manner [26]. Here, we show that the same
considerations apply to gain, and illustrate the general
consequences with the aid of three examples. Recent stud-
ies on random scattering showed that fabrication disorder
leads to a loss that increases with the group index [27,28].
This effect imposes another limitation to the degree of light
slow-down that may be useful for the applications.
However, in contrast, the effect investigated here is intrin-
sic, and will impede the performance even of a perfectly
regular structure.
Coupled-resonator optical waveguide.—We consider

first a CROW formed by a linear chain of identical and
weakly coupled neighboring optical resonators (inset of
Fig. 1). In the frequency range of interest the individual
resonators support a single resonance at ! and when
coupled together they form a propagating mode with
dispersion relation [29]

!ðkÞ ¼ !ð1! ig0Þ½1! ! cosðkaÞ': (1)
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FIG. 4. (Color online) Propagation characteristics of a line-defect photonic-crystal waveguide with a gain section of finite length, L = 100a.
(a) Dispersion curve and (b) group index, both of passive PhC waveguide Bloch mode. (c) Power transmission and (d) power reflection, both
as functions of the imaginary part of the refractive index and frequency. The results in (c) and (d) are obtained by numerically solving the 1D
coupled Bloch wave equations.

number fulfilling the condition
(

π

a
− Re(kz)

)
2L = 2πm, m = integer. (18)

Taking into account saturation of the gain medium due to
stimulated emission, the divergences correspond to the onset of
self-sustained lasing, with the imaginary part of the refractive
index being clamped to its threshold value. Again, we notice
the similarity of these results with the classical analyses of
distributed feedback lasers [36] and active Bragg gratings [28].

For frequencies closer to the band gap, the resonances
appear at smaller gain values, consistent with the enhancement
of the gain per unit length due to slow-light propagation [7].
Notice that the gain per unit time inside the material is not
changed, with the consequence, for lasers, that it is only the
contribution of mirror losses to the laser threshold that is
decreased when exploiting a slow-light mode.

B. PhC waveguides with a short active section

In this section we consider a short active PhC waveguide
section, of length L = 20a, but allow for higher values of
the material gain coefficient in order to explore the regime
investigated in [23]. As the size of the 2D simulation
domain decreases, it becomes feasible to solve the periodic
optical waveguiding problem [40] in the frequency domain
using the finite-element method (FEM) with numerically
exact Bloch mode excitation and/or absorptive boundary
conditions [41].

Figure 5 shows the transmitted and reflected power flux
of an input cw light exciting a slow-light mode [ωa/(2πc) =
0.2075, ngz ≃ 18.7] as a function of the imaginary part of
the refractive index. The solid and dash-dotted lines are
obtained from the 1D coupled-wave equations, while the
markers are corresponding numerical results based on the 2D
FEM. The results are shown in both logarithmic and linear
scales in order to appreciate the differences between the two
approaches. We see that the coupled-wave analysis reproduces

most features seen in the full numerical FEM simulations
for values of material gain and absorption coefficient up to
4000 cm−1 (|ni | up to 0.05) at a wavelength of 1550 nm,
which is large compared to gain values typically obtained in
semiconductors. For smaller gain values, the shorter device
shows characteristics similar to the longer device, with the
absolute gain being smaller for the same gain coefficient. We
attribute the difference between the coupled-wave model and
the full numerical result to a change of the effective gain
coefficient appearing as the prefactor of #+ and #− in the
RHS of Eqs. (12) and (13). Thus, for a large absolute value
of the imaginary part of the refractive index (large gain or
absorption), the band structure is modified such that the group
index is reduced and thereby also the slow-light enhanced gain
and absorption. This is in agreement with the result obtained in
[23], where the band structure of an infinitely periodic structure
was analyzed. In that case, there is no effect of backscattering,
since a unidirectional Bloch wave of the active structure is
considered, but consistent with the results presented here the
slow-light enhancement was observed to decrease with the
absolute value of the material gain coefficient.

We interpret the gain-induced change of effective group
index (slow-light enhancement factor) as follows. The origin
of the photonic-crystal band gap is the destructive interference
of multiply scattered waves. However, in the presence of gain
(or absorption), the destructive interference is incomplete.
For a defect photonic-crystal waveguide, this means that the
band edge is smeared and the group index no longer diverges
when approaching the band edge. In consequence, there is
a gain-induced reduction of the group index, and thereby
a gain-induced reduction of the slow-light enhancement of
light-matter interaction.

In the example above we considered a relatively modest
group index of ≃18.7, but when approaching the band edge
further, the (passive) group index rapidly increases, and the
saturation effect discussed above becomes more apparent, i.e.,
it sets in at lower values of the absolute gain coefficient.

053839-5

www.nanophotonics.dk 31 / 41

http://www.nanophotonics.dk


PHYSICAL REVIEW A 92, 053839 (2015)
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We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission
properties of active semiconductor photonic-crystal waveguides. In such devices, slow-light propagation can be
used to enhance the material gain per unit length, enabling, for example, the realization of short optical amplifiers
compatible with photonic integration. The coupled-wave analysis is compared to numerical approaches based
on the Fourier modal method and a frequency domain finite-element technique. The presence of material gain
leads to the buildup of a backscattered field, which is interpreted as distributed feedback effects or reflection at
passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure
of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.
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I. INTRODUCTION

Photonic-crystal (PhC) structures have been proposed as a
waveguide infrastructure for high-density photonic integrated
circuits [1–3]. Optical amplification is one of the fundamental
functionalities required for compensating attenuation and
coupling losses and thus scaling up the number of integrated
devices [4]. A major advantage of using photonic-crystal
waveguides, as opposed to standard ridge-type waveguides,
when realizing active structures with embedded semiconductor
gain layers is the use of slow-light effects to enhance light-
matter interactions. Thus, the spatial gain coefficient may be
increased by exploiting slow-light propagation, enabling the
realization of short devices suitable for photonic integration
[5–7]. Similarly, nonlinear effects induced by carrier depletion
may also be enhanced, leading to devices with ultralow
saturation power, which may be of interest for optical signal
processing applications [8].

In this work, we theoretically investigate the frequency-
domain optical propagation properties of an active PhC
waveguide of finite length embedded in an ideal passive
periodic PhC waveguide platform as shown in Fig. 1. Such
structures with site-controlled active gain sections may be
fabricated using different techniques [9–12].

As shown in Fig. 1, we approximate the device as a
photonic-crystal heterostucture [13] with a slowly varying
envelope of the imaginary part of the refractive index (bottom
part) and a fast periodic variation that naturally arises from the
penetration of the air holes through the gain layer (top part).
Such an envelope approximation in photonic-crystal devices
is analogous to the treatment of semiconductor optoelectronic
devices. Based on a perturbative approach [14], effective
one-dimensional (1D) coupled-wave analysis has been widely
used to investigate the impact of slow-light effects on optical
properties of passive PhC waveguides, e.g., for efficient taper
design [15], Kerr nonlinearities [16,17], and disorder-induced
scattering [18,19].

*jesm@fotonik.dtu.dk

FIG. 1. (Color online) Illustration of defect photonic-crystal
waveguide. The red part of the structure is active, i.e., this part of
the membrane structure contains embedded layers of quantum wells
or quantum dots that may provide gain upon optical or electrical
pumping. The lattice constant is a and the length of the active region
is L.

For perfectly periodic PhC waveguides, neglecting Kerr
nonlinearity and disorder, a rigorous set of equations for
the amplitudes of forward- and backward-propagating un-
perturbed Bloch waves may be derived [20]. In such a
formulation, the presence of active material in a finite
section of the PhC waveguide leads to multiple scattering,
which represents material-gain-induced coupling between the
forward and backward Bloch waves of passive structures. Such
distributed feedback (DFB) effects have so far not been consid-
ered in slow-light enhanced semiconductor optical amplifiers
[7,21–23]. We show here that it is important to consider the
impact of such feedback effects when calculating the gain of
an active PhC waveguide.

Alternatively, we may treat the structure as multiple
waveguide sections, namely an active PhC waveguide section
interfaced with two semi-infinite passive PhC waveguides
on both sides, with distinct sets of Bloch modes in the
passive and active PhC waveguide sections. In this picture, the
active-passive interfaces induce reflections, and Fabry-Pérot
effects are important in determining the strength of the
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In the limit of a weak electronic perturbation, we express
the self-consistent solutions as superpositions of the guided
Bloch waves for the passive structure, with slowly varying
amplitudes ψ±(z):

E ≃ ψ+(z)E0,+ + ψ−(z)E0,−, (6)

H ≃ ψ+(z)H0,+ + ψ−(z)H0,−. (7)

By using Eqs. (2), (3), (6), and (7), Eq. (1) can be formulated
as a set of continuity equations for the forward- and backward-
propagating amplitudes:

± 1
2∇ · [ψ±(z)Re{e × h∗}] = iωPpert · E∗

0,±. (8)

Equation (8) can be derived using the divergence theorem for
a closed surface S enclosing the simulation domain:

± 1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS = iω

∫

V

(Ppert · E∗
0,±) dV .

(9)

Here, n̂ is the outward unit normal vector of the closed surface
depicted in Fig. 2(a). This closed surface can be chosen
conveniently to comply with the experimental geometry
considered (near-field measurement [33] or transmission mea-
surement [34]), as well as the simulation domain and boundary
conditions (BCs) (e.g., periodic BCs [35] or perfectly matched
layer (PML) BCs [25]). The left-hand side (LHS) of Eq. (8)
describes the possible channels for the power flux in or out
of the surface and the right-hand side (RHS) describes the
source term. Equation (9) is in the form of a set of implicit
integral equations. Assuming that the considered modes are
transversely confined, the surface integral [LHS of Eq. (9)]
reduces to two integrals between the planes z = 0 and z = L,
described as

±1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS

≃ ±
∫ L

0
∂zψ±(z) dz × 1

2

∫

S

[Re{e × h∗} · ẑ] dS. (10)

For simplicity, we describe the carrier-induced complex
susceptibility perturbation as a product of a complex constant
χpert and an active material distribution function F (r):

Ppert = 1
2ε0χpertF (r)E, (11)

where F (r) = 1 (= 0) in the active (passive) region.
We now obtain the coupled-mode equations from Eq. (9)

with substitution from Eqs. (10) and (11):

∂zψ+(z) = iω

c
ngzχpert[δ(z)ψ+ + κ∗(z)e−i2kzzψ−], (12)

∂zψ−(z) = − iω

c
ngzχpert[δ(z)ψ− + κ(z)ei2kzzψ+], (13)

with

δ(z) ≡
a

∫
S
[ε0F (r)|e|2] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

, (14)

κ(z) ≡
a

∫
S
[ε0F (r)e · e] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

. (15)

Here, δ(z) and κ(z) denote the complex-valued propagation
and backscattering coefficient induced by the perturbation due
to the active material. The above 1D coupled-wave equations
are mathematically equivalent to a 2 × 2 scattering matrix
problem in a stack of thin films (at each z coordinate) and
readily solved numerically.

We note the similarity of the above coupled-mode equa-
tions with the coupled-mode equations originally derived by
Kogelnik and Shank for distributed feedback lasers [36].
However, while those equations describe the slow variation
of the complex amplitudes of plane waves (see also [37] for
application to PhC waveguides), Eqs. (12) and (13) describe
the slowly varying amplitudes of the Bloch waves of the
corresponding passive PhC. This has the consequence that in
the absence of a polarization perturbation, i.e., χpert = 0, the
forward and backward Bloch waves do not couple but remain
unidirectionally propagating waves, as required. The presence
of a perturbation, however, leads to coupling of the Bloch
waves, since the material perturbation gives rise to distributed
feedback. This is analogous to the scattering between Bloch
waves induced by structural disorder [18], although in that
case the backscattering sites are randomly distributed.

In general, the harmonic term exp(±i2kzz) leads to rela-
tively low backscattering efficiency due to phase mismatch
between forward- and backward-propagating Bloch waves.
Propagation losses decrease the effective propagation length
and further damp the backscattering. In passive PhC waveg-
uides, one can integrate similar coupled-mode equations
approximately by neglecting the distributed feedback terms
as long as the backscattered power is weak [15]. On the other
hand, in the case of positive gain, the effective length, over
which wave interaction takes place, increases, and a significant
backscattered wave may be built up, as we show here.

Equations (12) and (13) must be supplemented by boundary
conditions at the passive-active interfaces. The boundary
conditions [38] are

ψ+(0) = r1ψ−(0) + ψ0, (16)

ψ−(L) exp(−ikzL) = r2ψ+(L) exp(ikzL), (17)

where r1 and r2 are the amplitude reflectivities of the left
and right passive-active interfaces and ψ0 = 1 indicates unity
incident field from the left interface.

Finally, we note that the coupled-wave approach presented
here permits the inclusion of disorder-induced losses [18,19]
and carrier dynamics [8], which is beyond the scope of this
paper.

III. SIMULATION RESULTS

For the numerical investigations, we consider a two-
dimensional (2D) triangular lattice of air holes (hole radius
r = 0.25a) embedded in a semiconductor membrane with a
dielectric constant of n2

s = 12.1. The waveguide is a W1 line
defect with a single row of air holes omitted. The presence
of material gain or absorption is modeled via an imaginary
refractive index perturbation ni , corresponding to a material
gain g0 = −2niω/c. The corresponding susceptibility pertur-
bation is χpert = −n2

i + i2nsni . In practice, the value of the
gain coefficient is controlled via the charge-carrier density. We
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signal transmitted from the input to the output waveguide
as well as the back-reflected signal. We solve the optical
multiple-scattering problem in aggregates of generalized thin
films using the Fourier modal method (FMM) [or rigorous
coupled wave analysis (RCWA)] [24–26], which has been
widely implemented for various periodic photonic structures.
Using these methods, Bloch waves are computed and sorted
in both passive and active PhC sections [27].

In the following, we numerically validate that both ap-
proaches are equivalent in analyzing the proposed active
PhC devices. A similar discussion for active Bragg grating
structures can be found in [28]. We also analyze the situation
with very large material gain values, in which case the band
structure of the photonic-crystal structure is modified.

Here we limit our attention to the simplest type of photonic-
crystal waveguide, with one row of missing holes (W1
waveguide). In that case, slow-light propagation is realized
close to the Brillouin zone edge and the bandwidth over
which significant slowdown effects are realized is limited.
It was shown, though, that by dispersion engineering the
waveguide, a slow-light region of significant bandwidth can be
obtained for a frequency range displaced from the band edge
[29]. A systematic approach for optimizing the group index
bandwidth product was recently demonstrated [30]. For such
dispersion-engineered structures, the large group index region
may be centered around an inflection point of the dispersion
curves and it was shown that strong loss (or gain) can induce
drastic changes of the dispersion curves [31].

The paper is organized as follows: In Sec. II we derive
the coupled Bloch wave equations. Section III presents the
numerical results. We first consider a long waveguide with
relatively weak gain, and compare the coupled-wave analysis
to numerical results obtained using the FMM. Second, we
consider a shorter waveguide, enabling the consideration of
larger absolute gain coefficients as well as the use of a finite-
element numerical technique. Finally, the main conclusions
are summarized in Sec. IV.

II. EFFECTIVE ONE-DIMENSIONAL COUPLED-WAVE
ANALYSIS: PERTURBATION AND DISTRIBUTED

FEEDBACK

We consider a line-defect photonic-crystal waveguide,
where part of the waveguide is active, as illustrated in Fig. 1.
The active material may be implemented as layers of quantum
wells or quantum dots embedded in the middle of the photonic-
crystal membrane. In order to limit the energy consumption,
it is preferable only to have active material in the core of the
waveguide, as demonstrated in [9]. Here, however, we consider
the simpler structure, where the membrane is uniformly active
in the transverse directions (xy). This is appropriate for the case
of optically pumped structures, as considered, for example, in
[7]. We represent the material gain as a weak perturbation to
the passive periodic PhC waveguide in a finite-length section
and use the Bloch modes of the passive structure to expand
the field of the structure including gain. In this formulation,
multiple scattering in the active PhC structure is represented
as material-gain-induced coupling between the forward- and
backward-propagating Bloch waves of the passive structure,

FIG. 2. (Color online) Illustration of coupled-wave analysis of
PhC waveguide. (a) Schematic of surface used in the derivation of
coupled mode equations, with arrows indicating outward unit normal
vectors to the boundary surface. (b) Schematic diagram of coupling
between the amplitudes of forward- and backward-propagating Bloch
waves induced by the active material, which is represented by an
imaginary perturbation of the refractive index.

as illustrated in the top part of Fig. 2(b). This is similar to the
way disorder is analyzed in [18].

In the continuous wave (cw) limit, the Maxwell equations
can be rewritten based on the conjugated form of the Lorentz
reciprocity theorem [17,32]:

∇ · (E × H∗
0,± + E∗

0,± × H) = iωPpert · E∗
0,±. (1)

Here, E0,± and H0,± are the guided Bloch wave solutions
of Maxwell equations for the electrical and magnetic fields
obtained in the absence of electronic polarization perturbations
Ppert, with ± denoting forward- or backward-propagating
fields. The fields E and H are the self-consistent solutions
in the presence of electronic polarization perturbations, which
arise due to the presence of active material, e.g., leading to
stimulated emission and thus gain of the propagating fields.
We may represent the unperturbed Bloch waves as follows:

E0,± = 1
2 e±(x,y,z) exp(±ikzz) exp(−iωt), (2)

H0,± = 1
2 h±(x,y,z) exp(±ikzz) exp(−iωt), (3)

with e±(x,y,z) and h±(x,y,z) being the normalized complex
amplitude Bloch functions, ω the frequency, and kz the Bloch
wave number along the length of the waveguide.

The unit rms power flux Pz and unit rms electric and
magnetic stored energy W in a supercell are given as

Pz = 1
2

∫

S

[Re{e × h∗} · ẑ] dS, (4)

W = 1
4

∫

V

[
ε0n

2
b(r)|e|2 + µ0|h|2

]
dV = angz

c
Pz. (5)

Here, ngz ≡ c/vgz is the group index, where c and vgz =
∂ω/∂kz are the speed of light and the group velocity, ε0 and
µ0 are the vacuum permittivity and permeability, nb(r) is the
background refractive index, a is the lattice constant of the
photonic crystal, S indicates the transverse plane at position z,
and V is the volume of a PhC supercell.
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A common strategy to compensate for losses in optical nanostructures is to add gain material in the

system. By exploiting slow-light effects it is expected that the gain may be enhanced beyond its bulk

value. Here we show that this route cannot be followed uncritically: inclusion of gain inevitably modifies

the underlying dispersion law, and thereby may degrade the slow-light properties underlying the device

operation and the anticipated gain enhancement itself. This degradation is generic; we demonstrate it for

three different systems of current interest (coupled-resonator optical waveguides, Bragg stacks, and

photonic crystal waveguides). Nevertheless, a small amount of added gain may be beneficial.
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Light-matter interactions in periodic structures can be
significantly enhanced in the presence of slow-light propa-
gation. This paradigm has led to several important discov-
eries and demonstrations, including the enhancement of
nonlinear effects [1–7], Purcell effects for light emission
[8], light localization [9], as well as slow-light enhanced
absorption and gain processes [10–14]. Loss is an inherent
part of any passive optical material, and the inclusion of
gain material is presently receiving widespread attention in
many different situations, ranging from the fundamental
interest in gain-compensation of inherently lossy metama-
terials [15–18] and spasing in plasmonic nanostructures
[19,20], to active nanophotonic devices such as low-
threshold lasers [21] and miniaturized optical amplifiers.
There is a common expectation that if a material with net
gain g0 is incorporated in a periodic medium, such as
Bragg stacks, photonic crystals (PhC) or metamaterials,
the gain will effectively be enhanced to geff " n0gg0, where
n0g is the group index associated with the underlying dis-
persion relation !0ðkÞ of the passive structure. In a device
context the gain enhancement is anticipated to allow
shrinking the structure by a factor equivalent to the group
index, while maintaining the same output performance.
However, this reasoning implicitly assumes that gain can
be added without considering its impact on !0ðkÞ—an
assumption that calls for a closer scrutiny.

In this Letter, we analyze the modification of the disper-
sion due to gain, and show that a large gain will eventually
jeopardize the desired slow-light dispersion supported by
the periodic system, thus suppressing the slow-light in-
duced light-matter interaction enhancement anticipated in
the first place. On the other hand, a small amount of
material gain is shown to beneficial. Thus, importantly,
devices employing quantum-dot gain material may display
a superior performance.

Early investigations emphasized simple one-
dimensional periodic media such as Bragg stacks in the
context of slow-light enhanced gain and low-threshold
band-edge lasing [22]. Likewise, the related phenomenon
of slow-light enhanced absorption was proposed as a route
to miniaturized Beer-Lambert sensing devices [11].
Slow-light enhancement thus appears to be a conceptual
solution to a wide range of fundamental problems involv-
ing inherently weak light-matter interactions or techno-
logical challenges calling for miniaturization or enhanced
performance. However, recent studies of linear absorption
[23,24] suggest that ng itself is also affected by the pres-
ence of loss. Likewise, the gain may also influence ng [25]
and analytical studies of coupled-resonator optical wave-
guides (CROW) show explicitly that the group index and
attenuation have to be treated on an equal footing and in a
self-consistent manner [26]. Here, we show that the same
considerations apply to gain, and illustrate the general
consequences with the aid of three examples. Recent stud-
ies on random scattering showed that fabrication disorder
leads to a loss that increases with the group index [27,28].
This effect imposes another limitation to the degree of light
slow-down that may be useful for the applications.
However, in contrast, the effect investigated here is intrin-
sic, and will impede the performance even of a perfectly
regular structure.
Coupled-resonator optical waveguide.—We consider

first a CROW formed by a linear chain of identical and
weakly coupled neighboring optical resonators (inset of
Fig. 1). In the frequency range of interest the individual
resonators support a single resonance at ! and when
coupled together they form a propagating mode with
dispersion relation [29]

!ðkÞ ¼ !ð1! ig0Þ½1! ! cosðkaÞ': (1)

PRL 108, 183903 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
4 MAY 2012

0031-9007=12=108(18)=183903(5) 183903-1 ! 2012 American Physical Society

IMPACT OF SLOW-LIGHT ENHANCEMENT ON OPTICAL . . . PHYSICAL REVIEW A 92, 053839 (2015)

0 10 20 300.35 0.4
0.206

0.2065

0.207

0.2075

0.208

0.2085

0.209

0.2095

0 0.005 0.01 0.015
 
0 0.005 0.01 0.015

40

30

20

10

0

10

20

30

40

50
ba c d

Imaginary Part of Refractive Index, -niGroup IndexWave Number, kz/(2 /a)

Fr
eq

ue
nc

y, 
a/

(2
c)

Transmission [dB] Reflection [dB]

FIG. 4. (Color online) Propagation characteristics of a line-defect photonic-crystal waveguide with a gain section of finite length, L = 100a.
(a) Dispersion curve and (b) group index, both of passive PhC waveguide Bloch mode. (c) Power transmission and (d) power reflection, both
as functions of the imaginary part of the refractive index and frequency. The results in (c) and (d) are obtained by numerically solving the 1D
coupled Bloch wave equations.

number fulfilling the condition
(

π

a
− Re(kz)

)
2L = 2πm, m = integer. (18)

Taking into account saturation of the gain medium due to
stimulated emission, the divergences correspond to the onset of
self-sustained lasing, with the imaginary part of the refractive
index being clamped to its threshold value. Again, we notice
the similarity of these results with the classical analyses of
distributed feedback lasers [36] and active Bragg gratings [28].

For frequencies closer to the band gap, the resonances
appear at smaller gain values, consistent with the enhancement
of the gain per unit length due to slow-light propagation [7].
Notice that the gain per unit time inside the material is not
changed, with the consequence, for lasers, that it is only the
contribution of mirror losses to the laser threshold that is
decreased when exploiting a slow-light mode.

B. PhC waveguides with a short active section

In this section we consider a short active PhC waveguide
section, of length L = 20a, but allow for higher values of
the material gain coefficient in order to explore the regime
investigated in [23]. As the size of the 2D simulation
domain decreases, it becomes feasible to solve the periodic
optical waveguiding problem [40] in the frequency domain
using the finite-element method (FEM) with numerically
exact Bloch mode excitation and/or absorptive boundary
conditions [41].

Figure 5 shows the transmitted and reflected power flux
of an input cw light exciting a slow-light mode [ωa/(2πc) =
0.2075, ngz ≃ 18.7] as a function of the imaginary part of
the refractive index. The solid and dash-dotted lines are
obtained from the 1D coupled-wave equations, while the
markers are corresponding numerical results based on the 2D
FEM. The results are shown in both logarithmic and linear
scales in order to appreciate the differences between the two
approaches. We see that the coupled-wave analysis reproduces

most features seen in the full numerical FEM simulations
for values of material gain and absorption coefficient up to
4000 cm−1 (|ni | up to 0.05) at a wavelength of 1550 nm,
which is large compared to gain values typically obtained in
semiconductors. For smaller gain values, the shorter device
shows characteristics similar to the longer device, with the
absolute gain being smaller for the same gain coefficient. We
attribute the difference between the coupled-wave model and
the full numerical result to a change of the effective gain
coefficient appearing as the prefactor of #+ and #− in the
RHS of Eqs. (12) and (13). Thus, for a large absolute value
of the imaginary part of the refractive index (large gain or
absorption), the band structure is modified such that the group
index is reduced and thereby also the slow-light enhanced gain
and absorption. This is in agreement with the result obtained in
[23], where the band structure of an infinitely periodic structure
was analyzed. In that case, there is no effect of backscattering,
since a unidirectional Bloch wave of the active structure is
considered, but consistent with the results presented here the
slow-light enhancement was observed to decrease with the
absolute value of the material gain coefficient.

We interpret the gain-induced change of effective group
index (slow-light enhancement factor) as follows. The origin
of the photonic-crystal band gap is the destructive interference
of multiply scattered waves. However, in the presence of gain
(or absorption), the destructive interference is incomplete.
For a defect photonic-crystal waveguide, this means that the
band edge is smeared and the group index no longer diverges
when approaching the band edge. In consequence, there is
a gain-induced reduction of the group index, and thereby
a gain-induced reduction of the slow-light enhancement of
light-matter interaction.

In the example above we considered a relatively modest
group index of ≃18.7, but when approaching the band edge
further, the (passive) group index rapidly increases, and the
saturation effect discussed above becomes more apparent, i.e.,
it sets in at lower values of the absolute gain coefficient.
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We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission
properties of active semiconductor photonic-crystal waveguides. In such devices, slow-light propagation can be
used to enhance the material gain per unit length, enabling, for example, the realization of short optical amplifiers
compatible with photonic integration. The coupled-wave analysis is compared to numerical approaches based
on the Fourier modal method and a frequency domain finite-element technique. The presence of material gain
leads to the buildup of a backscattered field, which is interpreted as distributed feedback effects or reflection at
passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure
of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.
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I. INTRODUCTION

Photonic-crystal (PhC) structures have been proposed as a
waveguide infrastructure for high-density photonic integrated
circuits [1–3]. Optical amplification is one of the fundamental
functionalities required for compensating attenuation and
coupling losses and thus scaling up the number of integrated
devices [4]. A major advantage of using photonic-crystal
waveguides, as opposed to standard ridge-type waveguides,
when realizing active structures with embedded semiconductor
gain layers is the use of slow-light effects to enhance light-
matter interactions. Thus, the spatial gain coefficient may be
increased by exploiting slow-light propagation, enabling the
realization of short devices suitable for photonic integration
[5–7]. Similarly, nonlinear effects induced by carrier depletion
may also be enhanced, leading to devices with ultralow
saturation power, which may be of interest for optical signal
processing applications [8].

In this work, we theoretically investigate the frequency-
domain optical propagation properties of an active PhC
waveguide of finite length embedded in an ideal passive
periodic PhC waveguide platform as shown in Fig. 1. Such
structures with site-controlled active gain sections may be
fabricated using different techniques [9–12].

As shown in Fig. 1, we approximate the device as a
photonic-crystal heterostucture [13] with a slowly varying
envelope of the imaginary part of the refractive index (bottom
part) and a fast periodic variation that naturally arises from the
penetration of the air holes through the gain layer (top part).
Such an envelope approximation in photonic-crystal devices
is analogous to the treatment of semiconductor optoelectronic
devices. Based on a perturbative approach [14], effective
one-dimensional (1D) coupled-wave analysis has been widely
used to investigate the impact of slow-light effects on optical
properties of passive PhC waveguides, e.g., for efficient taper
design [15], Kerr nonlinearities [16,17], and disorder-induced
scattering [18,19].

*jesm@fotonik.dtu.dk

FIG. 1. (Color online) Illustration of defect photonic-crystal
waveguide. The red part of the structure is active, i.e., this part of
the membrane structure contains embedded layers of quantum wells
or quantum dots that may provide gain upon optical or electrical
pumping. The lattice constant is a and the length of the active region
is L.

For perfectly periodic PhC waveguides, neglecting Kerr
nonlinearity and disorder, a rigorous set of equations for
the amplitudes of forward- and backward-propagating un-
perturbed Bloch waves may be derived [20]. In such a
formulation, the presence of active material in a finite
section of the PhC waveguide leads to multiple scattering,
which represents material-gain-induced coupling between the
forward and backward Bloch waves of passive structures. Such
distributed feedback (DFB) effects have so far not been consid-
ered in slow-light enhanced semiconductor optical amplifiers
[7,21–23]. We show here that it is important to consider the
impact of such feedback effects when calculating the gain of
an active PhC waveguide.

Alternatively, we may treat the structure as multiple
waveguide sections, namely an active PhC waveguide section
interfaced with two semi-infinite passive PhC waveguides
on both sides, with distinct sets of Bloch modes in the
passive and active PhC waveguide sections. In this picture, the
active-passive interfaces induce reflections, and Fabry-Pérot
effects are important in determining the strength of the
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In the limit of a weak electronic perturbation, we express
the self-consistent solutions as superpositions of the guided
Bloch waves for the passive structure, with slowly varying
amplitudes ψ±(z):

E ≃ ψ+(z)E0,+ + ψ−(z)E0,−, (6)

H ≃ ψ+(z)H0,+ + ψ−(z)H0,−. (7)

By using Eqs. (2), (3), (6), and (7), Eq. (1) can be formulated
as a set of continuity equations for the forward- and backward-
propagating amplitudes:

± 1
2∇ · [ψ±(z)Re{e × h∗}] = iωPpert · E∗

0,±. (8)

Equation (8) can be derived using the divergence theorem for
a closed surface S enclosing the simulation domain:

± 1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS = iω

∫

V

(Ppert · E∗
0,±) dV .

(9)

Here, n̂ is the outward unit normal vector of the closed surface
depicted in Fig. 2(a). This closed surface can be chosen
conveniently to comply with the experimental geometry
considered (near-field measurement [33] or transmission mea-
surement [34]), as well as the simulation domain and boundary
conditions (BCs) (e.g., periodic BCs [35] or perfectly matched
layer (PML) BCs [25]). The left-hand side (LHS) of Eq. (8)
describes the possible channels for the power flux in or out
of the surface and the right-hand side (RHS) describes the
source term. Equation (9) is in the form of a set of implicit
integral equations. Assuming that the considered modes are
transversely confined, the surface integral [LHS of Eq. (9)]
reduces to two integrals between the planes z = 0 and z = L,
described as

±1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS

≃ ±
∫ L

0
∂zψ±(z) dz × 1

2

∫

S

[Re{e × h∗} · ẑ] dS. (10)

For simplicity, we describe the carrier-induced complex
susceptibility perturbation as a product of a complex constant
χpert and an active material distribution function F (r):

Ppert = 1
2ε0χpertF (r)E, (11)

where F (r) = 1 (= 0) in the active (passive) region.
We now obtain the coupled-mode equations from Eq. (9)

with substitution from Eqs. (10) and (11):

∂zψ+(z) = iω

c
ngzχpert[δ(z)ψ+ + κ∗(z)e−i2kzzψ−], (12)

∂zψ−(z) = − iω

c
ngzχpert[δ(z)ψ− + κ(z)ei2kzzψ+], (13)

with

δ(z) ≡
a

∫
S
[ε0F (r)|e|2] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

, (14)

κ(z) ≡
a

∫
S
[ε0F (r)e · e] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

. (15)

Here, δ(z) and κ(z) denote the complex-valued propagation
and backscattering coefficient induced by the perturbation due
to the active material. The above 1D coupled-wave equations
are mathematically equivalent to a 2 × 2 scattering matrix
problem in a stack of thin films (at each z coordinate) and
readily solved numerically.

We note the similarity of the above coupled-mode equa-
tions with the coupled-mode equations originally derived by
Kogelnik and Shank for distributed feedback lasers [36].
However, while those equations describe the slow variation
of the complex amplitudes of plane waves (see also [37] for
application to PhC waveguides), Eqs. (12) and (13) describe
the slowly varying amplitudes of the Bloch waves of the
corresponding passive PhC. This has the consequence that in
the absence of a polarization perturbation, i.e., χpert = 0, the
forward and backward Bloch waves do not couple but remain
unidirectionally propagating waves, as required. The presence
of a perturbation, however, leads to coupling of the Bloch
waves, since the material perturbation gives rise to distributed
feedback. This is analogous to the scattering between Bloch
waves induced by structural disorder [18], although in that
case the backscattering sites are randomly distributed.

In general, the harmonic term exp(±i2kzz) leads to rela-
tively low backscattering efficiency due to phase mismatch
between forward- and backward-propagating Bloch waves.
Propagation losses decrease the effective propagation length
and further damp the backscattering. In passive PhC waveg-
uides, one can integrate similar coupled-mode equations
approximately by neglecting the distributed feedback terms
as long as the backscattered power is weak [15]. On the other
hand, in the case of positive gain, the effective length, over
which wave interaction takes place, increases, and a significant
backscattered wave may be built up, as we show here.

Equations (12) and (13) must be supplemented by boundary
conditions at the passive-active interfaces. The boundary
conditions [38] are

ψ+(0) = r1ψ−(0) + ψ0, (16)

ψ−(L) exp(−ikzL) = r2ψ+(L) exp(ikzL), (17)

where r1 and r2 are the amplitude reflectivities of the left
and right passive-active interfaces and ψ0 = 1 indicates unity
incident field from the left interface.

Finally, we note that the coupled-wave approach presented
here permits the inclusion of disorder-induced losses [18,19]
and carrier dynamics [8], which is beyond the scope of this
paper.

III. SIMULATION RESULTS

For the numerical investigations, we consider a two-
dimensional (2D) triangular lattice of air holes (hole radius
r = 0.25a) embedded in a semiconductor membrane with a
dielectric constant of n2

s = 12.1. The waveguide is a W1 line
defect with a single row of air holes omitted. The presence
of material gain or absorption is modeled via an imaginary
refractive index perturbation ni , corresponding to a material
gain g0 = −2niω/c. The corresponding susceptibility pertur-
bation is χpert = −n2

i + i2nsni . In practice, the value of the
gain coefficient is controlled via the charge-carrier density. We
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signal transmitted from the input to the output waveguide
as well as the back-reflected signal. We solve the optical
multiple-scattering problem in aggregates of generalized thin
films using the Fourier modal method (FMM) [or rigorous
coupled wave analysis (RCWA)] [24–26], which has been
widely implemented for various periodic photonic structures.
Using these methods, Bloch waves are computed and sorted
in both passive and active PhC sections [27].

In the following, we numerically validate that both ap-
proaches are equivalent in analyzing the proposed active
PhC devices. A similar discussion for active Bragg grating
structures can be found in [28]. We also analyze the situation
with very large material gain values, in which case the band
structure of the photonic-crystal structure is modified.

Here we limit our attention to the simplest type of photonic-
crystal waveguide, with one row of missing holes (W1
waveguide). In that case, slow-light propagation is realized
close to the Brillouin zone edge and the bandwidth over
which significant slowdown effects are realized is limited.
It was shown, though, that by dispersion engineering the
waveguide, a slow-light region of significant bandwidth can be
obtained for a frequency range displaced from the band edge
[29]. A systematic approach for optimizing the group index
bandwidth product was recently demonstrated [30]. For such
dispersion-engineered structures, the large group index region
may be centered around an inflection point of the dispersion
curves and it was shown that strong loss (or gain) can induce
drastic changes of the dispersion curves [31].

The paper is organized as follows: In Sec. II we derive
the coupled Bloch wave equations. Section III presents the
numerical results. We first consider a long waveguide with
relatively weak gain, and compare the coupled-wave analysis
to numerical results obtained using the FMM. Second, we
consider a shorter waveguide, enabling the consideration of
larger absolute gain coefficients as well as the use of a finite-
element numerical technique. Finally, the main conclusions
are summarized in Sec. IV.

II. EFFECTIVE ONE-DIMENSIONAL COUPLED-WAVE
ANALYSIS: PERTURBATION AND DISTRIBUTED

FEEDBACK

We consider a line-defect photonic-crystal waveguide,
where part of the waveguide is active, as illustrated in Fig. 1.
The active material may be implemented as layers of quantum
wells or quantum dots embedded in the middle of the photonic-
crystal membrane. In order to limit the energy consumption,
it is preferable only to have active material in the core of the
waveguide, as demonstrated in [9]. Here, however, we consider
the simpler structure, where the membrane is uniformly active
in the transverse directions (xy). This is appropriate for the case
of optically pumped structures, as considered, for example, in
[7]. We represent the material gain as a weak perturbation to
the passive periodic PhC waveguide in a finite-length section
and use the Bloch modes of the passive structure to expand
the field of the structure including gain. In this formulation,
multiple scattering in the active PhC structure is represented
as material-gain-induced coupling between the forward- and
backward-propagating Bloch waves of the passive structure,

FIG. 2. (Color online) Illustration of coupled-wave analysis of
PhC waveguide. (a) Schematic of surface used in the derivation of
coupled mode equations, with arrows indicating outward unit normal
vectors to the boundary surface. (b) Schematic diagram of coupling
between the amplitudes of forward- and backward-propagating Bloch
waves induced by the active material, which is represented by an
imaginary perturbation of the refractive index.

as illustrated in the top part of Fig. 2(b). This is similar to the
way disorder is analyzed in [18].

In the continuous wave (cw) limit, the Maxwell equations
can be rewritten based on the conjugated form of the Lorentz
reciprocity theorem [17,32]:

∇ · (E × H∗
0,± + E∗

0,± × H) = iωPpert · E∗
0,±. (1)

Here, E0,± and H0,± are the guided Bloch wave solutions
of Maxwell equations for the electrical and magnetic fields
obtained in the absence of electronic polarization perturbations
Ppert, with ± denoting forward- or backward-propagating
fields. The fields E and H are the self-consistent solutions
in the presence of electronic polarization perturbations, which
arise due to the presence of active material, e.g., leading to
stimulated emission and thus gain of the propagating fields.
We may represent the unperturbed Bloch waves as follows:

E0,± = 1
2 e±(x,y,z) exp(±ikzz) exp(−iωt), (2)

H0,± = 1
2 h±(x,y,z) exp(±ikzz) exp(−iωt), (3)

with e±(x,y,z) and h±(x,y,z) being the normalized complex
amplitude Bloch functions, ω the frequency, and kz the Bloch
wave number along the length of the waveguide.

The unit rms power flux Pz and unit rms electric and
magnetic stored energy W in a supercell are given as

Pz = 1
2

∫

S

[Re{e × h∗} · ẑ] dS, (4)

W = 1
4

∫

V

[
ε0n

2
b(r)|e|2 + µ0|h|2

]
dV = angz

c
Pz. (5)

Here, ngz ≡ c/vgz is the group index, where c and vgz =
∂ω/∂kz are the speed of light and the group velocity, ε0 and
µ0 are the vacuum permittivity and permeability, nb(r) is the
background refractive index, a is the lattice constant of the
photonic crystal, S indicates the transverse plane at position z,
and V is the volume of a PhC supercell.
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Light-matter interactions in periodic structures can be
significantly enhanced in the presence of slow-light propa-
gation. This paradigm has led to several important discov-
eries and demonstrations, including the enhancement of
nonlinear effects [1–7], Purcell effects for light emission
[8], light localization [9], as well as slow-light enhanced
absorption and gain processes [10–14]. Loss is an inherent
part of any passive optical material, and the inclusion of
gain material is presently receiving widespread attention in
many different situations, ranging from the fundamental
interest in gain-compensation of inherently lossy metama-
terials [15–18] and spasing in plasmonic nanostructures
[19,20], to active nanophotonic devices such as low-
threshold lasers [21] and miniaturized optical amplifiers.
There is a common expectation that if a material with net
gain g0 is incorporated in a periodic medium, such as
Bragg stacks, photonic crystals (PhC) or metamaterials,
the gain will effectively be enhanced to geff " n0gg0, where
n0g is the group index associated with the underlying dis-
persion relation !0ðkÞ of the passive structure. In a device
context the gain enhancement is anticipated to allow
shrinking the structure by a factor equivalent to the group
index, while maintaining the same output performance.
However, this reasoning implicitly assumes that gain can
be added without considering its impact on !0ðkÞ—an
assumption that calls for a closer scrutiny.

In this Letter, we analyze the modification of the disper-
sion due to gain, and show that a large gain will eventually
jeopardize the desired slow-light dispersion supported by
the periodic system, thus suppressing the slow-light in-
duced light-matter interaction enhancement anticipated in
the first place. On the other hand, a small amount of
material gain is shown to beneficial. Thus, importantly,
devices employing quantum-dot gain material may display
a superior performance.

Early investigations emphasized simple one-
dimensional periodic media such as Bragg stacks in the
context of slow-light enhanced gain and low-threshold
band-edge lasing [22]. Likewise, the related phenomenon
of slow-light enhanced absorption was proposed as a route
to miniaturized Beer-Lambert sensing devices [11].
Slow-light enhancement thus appears to be a conceptual
solution to a wide range of fundamental problems involv-
ing inherently weak light-matter interactions or techno-
logical challenges calling for miniaturization or enhanced
performance. However, recent studies of linear absorption
[23,24] suggest that ng itself is also affected by the pres-
ence of loss. Likewise, the gain may also influence ng [25]
and analytical studies of coupled-resonator optical wave-
guides (CROW) show explicitly that the group index and
attenuation have to be treated on an equal footing and in a
self-consistent manner [26]. Here, we show that the same
considerations apply to gain, and illustrate the general
consequences with the aid of three examples. Recent stud-
ies on random scattering showed that fabrication disorder
leads to a loss that increases with the group index [27,28].
This effect imposes another limitation to the degree of light
slow-down that may be useful for the applications.
However, in contrast, the effect investigated here is intrin-
sic, and will impede the performance even of a perfectly
regular structure.
Coupled-resonator optical waveguide.—We consider

first a CROW formed by a linear chain of identical and
weakly coupled neighboring optical resonators (inset of
Fig. 1). In the frequency range of interest the individual
resonators support a single resonance at ! and when
coupled together they form a propagating mode with
dispersion relation [29]

!ðkÞ ¼ !ð1! ig0Þ½1! ! cosðkaÞ': (1)
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FIG. 4. (Color online) Propagation characteristics of a line-defect photonic-crystal waveguide with a gain section of finite length, L = 100a.
(a) Dispersion curve and (b) group index, both of passive PhC waveguide Bloch mode. (c) Power transmission and (d) power reflection, both
as functions of the imaginary part of the refractive index and frequency. The results in (c) and (d) are obtained by numerically solving the 1D
coupled Bloch wave equations.

number fulfilling the condition
(

π

a
− Re(kz)

)
2L = 2πm, m = integer. (18)

Taking into account saturation of the gain medium due to
stimulated emission, the divergences correspond to the onset of
self-sustained lasing, with the imaginary part of the refractive
index being clamped to its threshold value. Again, we notice
the similarity of these results with the classical analyses of
distributed feedback lasers [36] and active Bragg gratings [28].

For frequencies closer to the band gap, the resonances
appear at smaller gain values, consistent with the enhancement
of the gain per unit length due to slow-light propagation [7].
Notice that the gain per unit time inside the material is not
changed, with the consequence, for lasers, that it is only the
contribution of mirror losses to the laser threshold that is
decreased when exploiting a slow-light mode.

B. PhC waveguides with a short active section

In this section we consider a short active PhC waveguide
section, of length L = 20a, but allow for higher values of
the material gain coefficient in order to explore the regime
investigated in [23]. As the size of the 2D simulation
domain decreases, it becomes feasible to solve the periodic
optical waveguiding problem [40] in the frequency domain
using the finite-element method (FEM) with numerically
exact Bloch mode excitation and/or absorptive boundary
conditions [41].

Figure 5 shows the transmitted and reflected power flux
of an input cw light exciting a slow-light mode [ωa/(2πc) =
0.2075, ngz ≃ 18.7] as a function of the imaginary part of
the refractive index. The solid and dash-dotted lines are
obtained from the 1D coupled-wave equations, while the
markers are corresponding numerical results based on the 2D
FEM. The results are shown in both logarithmic and linear
scales in order to appreciate the differences between the two
approaches. We see that the coupled-wave analysis reproduces

most features seen in the full numerical FEM simulations
for values of material gain and absorption coefficient up to
4000 cm−1 (|ni | up to 0.05) at a wavelength of 1550 nm,
which is large compared to gain values typically obtained in
semiconductors. For smaller gain values, the shorter device
shows characteristics similar to the longer device, with the
absolute gain being smaller for the same gain coefficient. We
attribute the difference between the coupled-wave model and
the full numerical result to a change of the effective gain
coefficient appearing as the prefactor of #+ and #− in the
RHS of Eqs. (12) and (13). Thus, for a large absolute value
of the imaginary part of the refractive index (large gain or
absorption), the band structure is modified such that the group
index is reduced and thereby also the slow-light enhanced gain
and absorption. This is in agreement with the result obtained in
[23], where the band structure of an infinitely periodic structure
was analyzed. In that case, there is no effect of backscattering,
since a unidirectional Bloch wave of the active structure is
considered, but consistent with the results presented here the
slow-light enhancement was observed to decrease with the
absolute value of the material gain coefficient.

We interpret the gain-induced change of effective group
index (slow-light enhancement factor) as follows. The origin
of the photonic-crystal band gap is the destructive interference
of multiply scattered waves. However, in the presence of gain
(or absorption), the destructive interference is incomplete.
For a defect photonic-crystal waveguide, this means that the
band edge is smeared and the group index no longer diverges
when approaching the band edge. In consequence, there is
a gain-induced reduction of the group index, and thereby
a gain-induced reduction of the slow-light enhancement of
light-matter interaction.

In the example above we considered a relatively modest
group index of ≃18.7, but when approaching the band edge
further, the (passive) group index rapidly increases, and the
saturation effect discussed above becomes more apparent, i.e.,
it sets in at lower values of the absolute gain coefficient.
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We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission
properties of active semiconductor photonic-crystal waveguides. In such devices, slow-light propagation can be
used to enhance the material gain per unit length, enabling, for example, the realization of short optical amplifiers
compatible with photonic integration. The coupled-wave analysis is compared to numerical approaches based
on the Fourier modal method and a frequency domain finite-element technique. The presence of material gain
leads to the buildup of a backscattered field, which is interpreted as distributed feedback effects or reflection at
passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure
of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.
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I. INTRODUCTION

Photonic-crystal (PhC) structures have been proposed as a
waveguide infrastructure for high-density photonic integrated
circuits [1–3]. Optical amplification is one of the fundamental
functionalities required for compensating attenuation and
coupling losses and thus scaling up the number of integrated
devices [4]. A major advantage of using photonic-crystal
waveguides, as opposed to standard ridge-type waveguides,
when realizing active structures with embedded semiconductor
gain layers is the use of slow-light effects to enhance light-
matter interactions. Thus, the spatial gain coefficient may be
increased by exploiting slow-light propagation, enabling the
realization of short devices suitable for photonic integration
[5–7]. Similarly, nonlinear effects induced by carrier depletion
may also be enhanced, leading to devices with ultralow
saturation power, which may be of interest for optical signal
processing applications [8].

In this work, we theoretically investigate the frequency-
domain optical propagation properties of an active PhC
waveguide of finite length embedded in an ideal passive
periodic PhC waveguide platform as shown in Fig. 1. Such
structures with site-controlled active gain sections may be
fabricated using different techniques [9–12].

As shown in Fig. 1, we approximate the device as a
photonic-crystal heterostucture [13] with a slowly varying
envelope of the imaginary part of the refractive index (bottom
part) and a fast periodic variation that naturally arises from the
penetration of the air holes through the gain layer (top part).
Such an envelope approximation in photonic-crystal devices
is analogous to the treatment of semiconductor optoelectronic
devices. Based on a perturbative approach [14], effective
one-dimensional (1D) coupled-wave analysis has been widely
used to investigate the impact of slow-light effects on optical
properties of passive PhC waveguides, e.g., for efficient taper
design [15], Kerr nonlinearities [16,17], and disorder-induced
scattering [18,19].

*jesm@fotonik.dtu.dk

FIG. 1. (Color online) Illustration of defect photonic-crystal
waveguide. The red part of the structure is active, i.e., this part of
the membrane structure contains embedded layers of quantum wells
or quantum dots that may provide gain upon optical or electrical
pumping. The lattice constant is a and the length of the active region
is L.

For perfectly periodic PhC waveguides, neglecting Kerr
nonlinearity and disorder, a rigorous set of equations for
the amplitudes of forward- and backward-propagating un-
perturbed Bloch waves may be derived [20]. In such a
formulation, the presence of active material in a finite
section of the PhC waveguide leads to multiple scattering,
which represents material-gain-induced coupling between the
forward and backward Bloch waves of passive structures. Such
distributed feedback (DFB) effects have so far not been consid-
ered in slow-light enhanced semiconductor optical amplifiers
[7,21–23]. We show here that it is important to consider the
impact of such feedback effects when calculating the gain of
an active PhC waveguide.

Alternatively, we may treat the structure as multiple
waveguide sections, namely an active PhC waveguide section
interfaced with two semi-infinite passive PhC waveguides
on both sides, with distinct sets of Bloch modes in the
passive and active PhC waveguide sections. In this picture, the
active-passive interfaces induce reflections, and Fabry-Pérot
effects are important in determining the strength of the
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In the limit of a weak electronic perturbation, we express
the self-consistent solutions as superpositions of the guided
Bloch waves for the passive structure, with slowly varying
amplitudes ψ±(z):

E ≃ ψ+(z)E0,+ + ψ−(z)E0,−, (6)

H ≃ ψ+(z)H0,+ + ψ−(z)H0,−. (7)

By using Eqs. (2), (3), (6), and (7), Eq. (1) can be formulated
as a set of continuity equations for the forward- and backward-
propagating amplitudes:

± 1
2∇ · [ψ±(z)Re{e × h∗}] = iωPpert · E∗

0,±. (8)

Equation (8) can be derived using the divergence theorem for
a closed surface S enclosing the simulation domain:

± 1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS = iω

∫

V

(Ppert · E∗
0,±) dV .

(9)

Here, n̂ is the outward unit normal vector of the closed surface
depicted in Fig. 2(a). This closed surface can be chosen
conveniently to comply with the experimental geometry
considered (near-field measurement [33] or transmission mea-
surement [34]), as well as the simulation domain and boundary
conditions (BCs) (e.g., periodic BCs [35] or perfectly matched
layer (PML) BCs [25]). The left-hand side (LHS) of Eq. (8)
describes the possible channels for the power flux in or out
of the surface and the right-hand side (RHS) describes the
source term. Equation (9) is in the form of a set of implicit
integral equations. Assuming that the considered modes are
transversely confined, the surface integral [LHS of Eq. (9)]
reduces to two integrals between the planes z = 0 and z = L,
described as

±1
2

!
S
[ψ±(z)Re{e × h∗} · n̂] dS

≃ ±
∫ L

0
∂zψ±(z) dz × 1

2

∫

S

[Re{e × h∗} · ẑ] dS. (10)

For simplicity, we describe the carrier-induced complex
susceptibility perturbation as a product of a complex constant
χpert and an active material distribution function F (r):

Ppert = 1
2ε0χpertF (r)E, (11)

where F (r) = 1 (= 0) in the active (passive) region.
We now obtain the coupled-mode equations from Eq. (9)

with substitution from Eqs. (10) and (11):

∂zψ+(z) = iω

c
ngzχpert[δ(z)ψ+ + κ∗(z)e−i2kzzψ−], (12)

∂zψ−(z) = − iω

c
ngzχpert[δ(z)ψ− + κ(z)ei2kzzψ+], (13)

with

δ(z) ≡
a

∫
S
[ε0F (r)|e|2] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

, (14)

κ(z) ≡
a

∫
S
[ε0F (r)e · e] dS

∫
V

[
ϵ0n

2
b(r)|e|2 + µ0|h|2

]
dV

. (15)

Here, δ(z) and κ(z) denote the complex-valued propagation
and backscattering coefficient induced by the perturbation due
to the active material. The above 1D coupled-wave equations
are mathematically equivalent to a 2 × 2 scattering matrix
problem in a stack of thin films (at each z coordinate) and
readily solved numerically.

We note the similarity of the above coupled-mode equa-
tions with the coupled-mode equations originally derived by
Kogelnik and Shank for distributed feedback lasers [36].
However, while those equations describe the slow variation
of the complex amplitudes of plane waves (see also [37] for
application to PhC waveguides), Eqs. (12) and (13) describe
the slowly varying amplitudes of the Bloch waves of the
corresponding passive PhC. This has the consequence that in
the absence of a polarization perturbation, i.e., χpert = 0, the
forward and backward Bloch waves do not couple but remain
unidirectionally propagating waves, as required. The presence
of a perturbation, however, leads to coupling of the Bloch
waves, since the material perturbation gives rise to distributed
feedback. This is analogous to the scattering between Bloch
waves induced by structural disorder [18], although in that
case the backscattering sites are randomly distributed.

In general, the harmonic term exp(±i2kzz) leads to rela-
tively low backscattering efficiency due to phase mismatch
between forward- and backward-propagating Bloch waves.
Propagation losses decrease the effective propagation length
and further damp the backscattering. In passive PhC waveg-
uides, one can integrate similar coupled-mode equations
approximately by neglecting the distributed feedback terms
as long as the backscattered power is weak [15]. On the other
hand, in the case of positive gain, the effective length, over
which wave interaction takes place, increases, and a significant
backscattered wave may be built up, as we show here.

Equations (12) and (13) must be supplemented by boundary
conditions at the passive-active interfaces. The boundary
conditions [38] are

ψ+(0) = r1ψ−(0) + ψ0, (16)

ψ−(L) exp(−ikzL) = r2ψ+(L) exp(ikzL), (17)

where r1 and r2 are the amplitude reflectivities of the left
and right passive-active interfaces and ψ0 = 1 indicates unity
incident field from the left interface.

Finally, we note that the coupled-wave approach presented
here permits the inclusion of disorder-induced losses [18,19]
and carrier dynamics [8], which is beyond the scope of this
paper.

III. SIMULATION RESULTS

For the numerical investigations, we consider a two-
dimensional (2D) triangular lattice of air holes (hole radius
r = 0.25a) embedded in a semiconductor membrane with a
dielectric constant of n2

s = 12.1. The waveguide is a W1 line
defect with a single row of air holes omitted. The presence
of material gain or absorption is modeled via an imaginary
refractive index perturbation ni , corresponding to a material
gain g0 = −2niω/c. The corresponding susceptibility pertur-
bation is χpert = −n2

i + i2nsni . In practice, the value of the
gain coefficient is controlled via the charge-carrier density. We
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signal transmitted from the input to the output waveguide
as well as the back-reflected signal. We solve the optical
multiple-scattering problem in aggregates of generalized thin
films using the Fourier modal method (FMM) [or rigorous
coupled wave analysis (RCWA)] [24–26], which has been
widely implemented for various periodic photonic structures.
Using these methods, Bloch waves are computed and sorted
in both passive and active PhC sections [27].

In the following, we numerically validate that both ap-
proaches are equivalent in analyzing the proposed active
PhC devices. A similar discussion for active Bragg grating
structures can be found in [28]. We also analyze the situation
with very large material gain values, in which case the band
structure of the photonic-crystal structure is modified.

Here we limit our attention to the simplest type of photonic-
crystal waveguide, with one row of missing holes (W1
waveguide). In that case, slow-light propagation is realized
close to the Brillouin zone edge and the bandwidth over
which significant slowdown effects are realized is limited.
It was shown, though, that by dispersion engineering the
waveguide, a slow-light region of significant bandwidth can be
obtained for a frequency range displaced from the band edge
[29]. A systematic approach for optimizing the group index
bandwidth product was recently demonstrated [30]. For such
dispersion-engineered structures, the large group index region
may be centered around an inflection point of the dispersion
curves and it was shown that strong loss (or gain) can induce
drastic changes of the dispersion curves [31].

The paper is organized as follows: In Sec. II we derive
the coupled Bloch wave equations. Section III presents the
numerical results. We first consider a long waveguide with
relatively weak gain, and compare the coupled-wave analysis
to numerical results obtained using the FMM. Second, we
consider a shorter waveguide, enabling the consideration of
larger absolute gain coefficients as well as the use of a finite-
element numerical technique. Finally, the main conclusions
are summarized in Sec. IV.

II. EFFECTIVE ONE-DIMENSIONAL COUPLED-WAVE
ANALYSIS: PERTURBATION AND DISTRIBUTED

FEEDBACK

We consider a line-defect photonic-crystal waveguide,
where part of the waveguide is active, as illustrated in Fig. 1.
The active material may be implemented as layers of quantum
wells or quantum dots embedded in the middle of the photonic-
crystal membrane. In order to limit the energy consumption,
it is preferable only to have active material in the core of the
waveguide, as demonstrated in [9]. Here, however, we consider
the simpler structure, where the membrane is uniformly active
in the transverse directions (xy). This is appropriate for the case
of optically pumped structures, as considered, for example, in
[7]. We represent the material gain as a weak perturbation to
the passive periodic PhC waveguide in a finite-length section
and use the Bloch modes of the passive structure to expand
the field of the structure including gain. In this formulation,
multiple scattering in the active PhC structure is represented
as material-gain-induced coupling between the forward- and
backward-propagating Bloch waves of the passive structure,

FIG. 2. (Color online) Illustration of coupled-wave analysis of
PhC waveguide. (a) Schematic of surface used in the derivation of
coupled mode equations, with arrows indicating outward unit normal
vectors to the boundary surface. (b) Schematic diagram of coupling
between the amplitudes of forward- and backward-propagating Bloch
waves induced by the active material, which is represented by an
imaginary perturbation of the refractive index.

as illustrated in the top part of Fig. 2(b). This is similar to the
way disorder is analyzed in [18].

In the continuous wave (cw) limit, the Maxwell equations
can be rewritten based on the conjugated form of the Lorentz
reciprocity theorem [17,32]:

∇ · (E × H∗
0,± + E∗

0,± × H) = iωPpert · E∗
0,±. (1)

Here, E0,± and H0,± are the guided Bloch wave solutions
of Maxwell equations for the electrical and magnetic fields
obtained in the absence of electronic polarization perturbations
Ppert, with ± denoting forward- or backward-propagating
fields. The fields E and H are the self-consistent solutions
in the presence of electronic polarization perturbations, which
arise due to the presence of active material, e.g., leading to
stimulated emission and thus gain of the propagating fields.
We may represent the unperturbed Bloch waves as follows:

E0,± = 1
2 e±(x,y,z) exp(±ikzz) exp(−iωt), (2)

H0,± = 1
2 h±(x,y,z) exp(±ikzz) exp(−iωt), (3)

with e±(x,y,z) and h±(x,y,z) being the normalized complex
amplitude Bloch functions, ω the frequency, and kz the Bloch
wave number along the length of the waveguide.

The unit rms power flux Pz and unit rms electric and
magnetic stored energy W in a supercell are given as

Pz = 1
2

∫

S

[Re{e × h∗} · ẑ] dS, (4)

W = 1
4

∫

V

[
ε0n

2
b(r)|e|2 + µ0|h|2

]
dV = angz

c
Pz. (5)

Here, ngz ≡ c/vgz is the group index, where c and vgz =
∂ω/∂kz are the speed of light and the group velocity, ε0 and
µ0 are the vacuum permittivity and permeability, nb(r) is the
background refractive index, a is the lattice constant of the
photonic crystal, S indicates the transverse plane at position z,
and V is the volume of a PhC supercell.
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A common strategy to compensate for losses in optical nanostructures is to add gain material in the

system. By exploiting slow-light effects it is expected that the gain may be enhanced beyond its bulk

value. Here we show that this route cannot be followed uncritically: inclusion of gain inevitably modifies

the underlying dispersion law, and thereby may degrade the slow-light properties underlying the device

operation and the anticipated gain enhancement itself. This degradation is generic; we demonstrate it for

three different systems of current interest (coupled-resonator optical waveguides, Bragg stacks, and

photonic crystal waveguides). Nevertheless, a small amount of added gain may be beneficial.
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Light-matter interactions in periodic structures can be
significantly enhanced in the presence of slow-light propa-
gation. This paradigm has led to several important discov-
eries and demonstrations, including the enhancement of
nonlinear effects [1–7], Purcell effects for light emission
[8], light localization [9], as well as slow-light enhanced
absorption and gain processes [10–14]. Loss is an inherent
part of any passive optical material, and the inclusion of
gain material is presently receiving widespread attention in
many different situations, ranging from the fundamental
interest in gain-compensation of inherently lossy metama-
terials [15–18] and spasing in plasmonic nanostructures
[19,20], to active nanophotonic devices such as low-
threshold lasers [21] and miniaturized optical amplifiers.
There is a common expectation that if a material with net
gain g0 is incorporated in a periodic medium, such as
Bragg stacks, photonic crystals (PhC) or metamaterials,
the gain will effectively be enhanced to geff " n0gg0, where
n0g is the group index associated with the underlying dis-
persion relation !0ðkÞ of the passive structure. In a device
context the gain enhancement is anticipated to allow
shrinking the structure by a factor equivalent to the group
index, while maintaining the same output performance.
However, this reasoning implicitly assumes that gain can
be added without considering its impact on !0ðkÞ—an
assumption that calls for a closer scrutiny.

In this Letter, we analyze the modification of the disper-
sion due to gain, and show that a large gain will eventually
jeopardize the desired slow-light dispersion supported by
the periodic system, thus suppressing the slow-light in-
duced light-matter interaction enhancement anticipated in
the first place. On the other hand, a small amount of
material gain is shown to beneficial. Thus, importantly,
devices employing quantum-dot gain material may display
a superior performance.

Early investigations emphasized simple one-
dimensional periodic media such as Bragg stacks in the
context of slow-light enhanced gain and low-threshold
band-edge lasing [22]. Likewise, the related phenomenon
of slow-light enhanced absorption was proposed as a route
to miniaturized Beer-Lambert sensing devices [11].
Slow-light enhancement thus appears to be a conceptual
solution to a wide range of fundamental problems involv-
ing inherently weak light-matter interactions or techno-
logical challenges calling for miniaturization or enhanced
performance. However, recent studies of linear absorption
[23,24] suggest that ng itself is also affected by the pres-
ence of loss. Likewise, the gain may also influence ng [25]
and analytical studies of coupled-resonator optical wave-
guides (CROW) show explicitly that the group index and
attenuation have to be treated on an equal footing and in a
self-consistent manner [26]. Here, we show that the same
considerations apply to gain, and illustrate the general
consequences with the aid of three examples. Recent stud-
ies on random scattering showed that fabrication disorder
leads to a loss that increases with the group index [27,28].
This effect imposes another limitation to the degree of light
slow-down that may be useful for the applications.
However, in contrast, the effect investigated here is intrin-
sic, and will impede the performance even of a perfectly
regular structure.
Coupled-resonator optical waveguide.—We consider

first a CROW formed by a linear chain of identical and
weakly coupled neighboring optical resonators (inset of
Fig. 1). In the frequency range of interest the individual
resonators support a single resonance at ! and when
coupled together they form a propagating mode with
dispersion relation [29]

!ðkÞ ¼ !ð1! ig0Þ½1! ! cosðkaÞ': (1)
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FIG. 4. (Color online) Propagation characteristics of a line-defect photonic-crystal waveguide with a gain section of finite length, L = 100a.
(a) Dispersion curve and (b) group index, both of passive PhC waveguide Bloch mode. (c) Power transmission and (d) power reflection, both
as functions of the imaginary part of the refractive index and frequency. The results in (c) and (d) are obtained by numerically solving the 1D
coupled Bloch wave equations.

number fulfilling the condition
(

π

a
− Re(kz)

)
2L = 2πm, m = integer. (18)

Taking into account saturation of the gain medium due to
stimulated emission, the divergences correspond to the onset of
self-sustained lasing, with the imaginary part of the refractive
index being clamped to its threshold value. Again, we notice
the similarity of these results with the classical analyses of
distributed feedback lasers [36] and active Bragg gratings [28].

For frequencies closer to the band gap, the resonances
appear at smaller gain values, consistent with the enhancement
of the gain per unit length due to slow-light propagation [7].
Notice that the gain per unit time inside the material is not
changed, with the consequence, for lasers, that it is only the
contribution of mirror losses to the laser threshold that is
decreased when exploiting a slow-light mode.

B. PhC waveguides with a short active section

In this section we consider a short active PhC waveguide
section, of length L = 20a, but allow for higher values of
the material gain coefficient in order to explore the regime
investigated in [23]. As the size of the 2D simulation
domain decreases, it becomes feasible to solve the periodic
optical waveguiding problem [40] in the frequency domain
using the finite-element method (FEM) with numerically
exact Bloch mode excitation and/or absorptive boundary
conditions [41].

Figure 5 shows the transmitted and reflected power flux
of an input cw light exciting a slow-light mode [ωa/(2πc) =
0.2075, ngz ≃ 18.7] as a function of the imaginary part of
the refractive index. The solid and dash-dotted lines are
obtained from the 1D coupled-wave equations, while the
markers are corresponding numerical results based on the 2D
FEM. The results are shown in both logarithmic and linear
scales in order to appreciate the differences between the two
approaches. We see that the coupled-wave analysis reproduces

most features seen in the full numerical FEM simulations
for values of material gain and absorption coefficient up to
4000 cm−1 (|ni | up to 0.05) at a wavelength of 1550 nm,
which is large compared to gain values typically obtained in
semiconductors. For smaller gain values, the shorter device
shows characteristics similar to the longer device, with the
absolute gain being smaller for the same gain coefficient. We
attribute the difference between the coupled-wave model and
the full numerical result to a change of the effective gain
coefficient appearing as the prefactor of #+ and #− in the
RHS of Eqs. (12) and (13). Thus, for a large absolute value
of the imaginary part of the refractive index (large gain or
absorption), the band structure is modified such that the group
index is reduced and thereby also the slow-light enhanced gain
and absorption. This is in agreement with the result obtained in
[23], where the band structure of an infinitely periodic structure
was analyzed. In that case, there is no effect of backscattering,
since a unidirectional Bloch wave of the active structure is
considered, but consistent with the results presented here the
slow-light enhancement was observed to decrease with the
absolute value of the material gain coefficient.

We interpret the gain-induced change of effective group
index (slow-light enhancement factor) as follows. The origin
of the photonic-crystal band gap is the destructive interference
of multiply scattered waves. However, in the presence of gain
(or absorption), the destructive interference is incomplete.
For a defect photonic-crystal waveguide, this means that the
band edge is smeared and the group index no longer diverges
when approaching the band edge. In consequence, there is
a gain-induced reduction of the group index, and thereby
a gain-induced reduction of the slow-light enhancement of
light-matter interaction.

In the example above we considered a relatively modest
group index of ≃18.7, but when approaching the band edge
further, the (passive) group index rapidly increases, and the
saturation effect discussed above becomes more apparent, i.e.,
it sets in at lower values of the absolute gain coefficient.
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III. What do we do in our research?
– First half: Light control

with slow light waveguides

power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An

insight review articles
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.

P $ !4
3
%2! !!

"
n!"

3 
!
Q
V!

where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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III. What do we do in our research?

– First half: Light control
with slow light waveguides

power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An

insight review articles
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).

© 2003        Nature  Publishing Group

Γ(r;ω)
Γ0

=
∑
µ fω̃µ(r;ω)

Γ(r;ω ' ω̃µ′)
Γ0

' fω̃µ′ (r;ω) ∝ Qµ′

Vµ′

Quasi-normal modes

www.nanophotonics.dk 33 / 41

http://www.nanophotonics.dk


[E. Purcell, Phys. Rev. 69, 681 (1946)]

power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.

P $ !4
3
%2! !!

"
n!"

3 
!
Q
V!

where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect

E tched
holes

Defect region

Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and
leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on
the mode calculationmethods typically applied in the literature, andwhich allows one to compute the Purcell effect
and other interesting optical phenomena in a rigorous and unambiguous way. © 2012 Optical Society of America
OCIS codes: 000.3860, 230.5750.

Optical microcavities are inherently dissipative and are
typically characterized by a quality factor, or Q-value, de-
scribing the relative energy loss per cycle as well as an
effective mode volume, Veff , which measures the spatial
confinement of light in the cavity [1]. Cavities with high
Q-values and small mode volumes provide enhanced
light-matter interaction and are of both fundamental
and technological interest. Effective mode volumes are
ubiquitous in physics and connect to a wide range of op-
tical phenomena. As a striking example of the use of
mode volumes, an emitter at the field antinode in an op-
tical cavity will experience a medium-enhanced radiation
rate relative to that in a homogeneous medium given by
the so-called Purcell factor [2]
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where λc is the free space wavelength, and nc is the
material refractive index at the field antinode rc. Mode
volumes are often attributed to the physically appealing
idea of a single cavity mode. However, in spite of the
fact that cavity modes are widely used in the literature,
more often than not there is a disturbing lack of a precise
definition, and their mathematical properties there-
fore remain unspecified. The name might suggest that
cavity modes are localized and vanish at large distances,
similar to the bound states of the hydrogen atom. In
fact, the opposite is true—for any finite Q, the cavity
modes necessarily diverge exponentially at sufficiently
large distances. This effectively renders the calcula-
tion of an effective mode volume nontrivial. In particu-
lar, defining ϵr"r# as the relative permittivity and
~fc"r# as the cavity mode, the common (normal mode)
prescription

VN
eff !

Z

V

ϵr"r#j~fc"r#j2

ϵr"rc#j~fc"rc#j2
dr (2)

is inapplicable because the integral diverges. For high-Q
cavities, regularization of the integral in Eq. (2) by intro-
ducing a cut-off has provided good correspondence with
experimental results [3,4], but the mathematical basis
and the limits of such an approach remain unclear.

In this Letter, we introduce a generalized mode vo-
lume, which is defined in a precise and unambiguous
way for cavities with arbitrary Q and which recovers
Eq. (2) in the limit of infinite Q. For general resonant
structures, this provides the proper theoretical frame-
work for the Purcell factor and other optical phenomena
that may be interpreted in terms of mode volumes. In par-
ticular, the generalized mode volume applies also to
structures with complex permittivity for which the lim-
ited validity of Eq. (2) has recently been pointed out
[5]. We first argue that the term “cavity mode” can only
be meaningfully defined as a solution to the wave equa-
tion with outgoing wave boundary conditions. This defi-
nition renders the cavity modes identical to the so-called
quasinormal modes [6], and we show how this definition
complies with two different numerical calculation meth-
ods including finite-difference time-domain (FDTD). In
particular, we elucidate how the modes from both calcu-
lation methods show an exponential divergence. Figure 1
shows a sketch of an example cavity along with the mode
profile. For this cavity mode, we show explicitly how the
integral in Eq. (2) diverges as a function of the integration
volume V , and we emphasize that this will be the case for
all cavities with a finite Q. For high-Q cavities, however,
the divergence in the cavity modes is slow and may not
be discernible in practical calculations due to limited
numerical accuracy.

The electric field satisfies the wave equation with gen-
eral solutions of the form E"r; t# ! E"r;ω# expf−iωtg. The
position-dependent field E"r;ω# solves the equation
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Fig. 1. (Color online) Sketch of a photonic crystal (lattice con-
stant a) in a membrane of high refractive index. A defect cavity
is formed by the omission of a single hole. Right: absolute value
of the cavity mode in the planes z ! 0 (top) and y ! 0 (bottom).
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∇ ×∇ × E!r;ω" − k20ϵr!r"E!r;ω" # 0; (3)

where k0 # ω∕c is the ratio of the angular frequency to
the speed of light. We define the cavity modes as the
solutions to Eq. (3) with outgoing wave boundary condi-
tions (the Sommerfeld radiation condition [7]). This
choice of boundary conditions renders the problem
non-Hermitian with a discrete spectrum. In order to
distinguish from the normal modes of Hermitian eigen-
value problems, we denote the vector eigenfunctions
with a tilde as ~fμ!r". The corresponding eigenfrequencies
~ωμ # ~ωR

μ $ i~ωI
μ are in general complex with ~ωI

μ < 0, and
the Q-value is obtained immediately as Q # −~ωR

μ∕2~ωI
μ.

This, together with the examples below, show that the
above definition is completely consistent with the ex-
pected properties of cavity modes. At large distances,
the boundary conditions force the modes to behave as
outgoing waves of the form ~f!r" ∝ exp!ik0r"∕

!!!
r

p

[two-dimensional (2D)] and ~f!r" ∝ exp!ik0r"∕r [three-
dimensional (3D)], where r # jrj, and since k0 #
kR0 $ ikI0 with kI0 < 0, they diverge exponentially as
r → ∞. Despite their divergence, the cavity modes may
be normalized as [6]

hh~fμj~fλii # lim
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V
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$ i
!!!!!ϵr

p
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~ωμ $ ~ωλ

Z
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~fμ!r" · ~fλ!r"dr # δμ;λ; (4)

where ∂V denotes the border of the volume V . The limit
V → ∞ is calculated in practice by increasing the volume
to obtain convergence. For the systems that we investi-
gate below (and for all systems that we have investi-
gated), the convergence is remarkably fast. For very
low-Q cavities, however, the convergence is nontrivial
due to the exponential divergence of the modes that
may cause the inner product to oscillate around the prop-
er value as a function of calculation domain size. The im-
plicit assumption behind the notion of a cavity mode is
that one mode ~fμ # ~fc dominates the expansion of the
electromagnetic Green’s tensor in the cavity [6]. One
can use this assumption and the normalization in Eq. (4)
to recover Eq. (1) with the effective mode volume

1
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#
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where the generalized mode volume vQ # vRQ $ ivIQ is
complex in general. This prescription provides a direct
and unambiguous way of calculating the effective mode
volume for arbitrary cavities.
For calculations of cavity modes in general structures,

the currently most popular option within the photonics
community is arguably to apply FDTD with perfectly
matched layers to calculate the modes as the resonant
fields that are excited by an initial short input pulse
[8]. Another option is to calculate the cavity modes from
a Fredholm type equation of the form

E!r;ω" #
$ω
c

%
2 Z

V
GB!r; r0;ω"Δϵ!r0"E!r0;ω"dr0; (6)

where Δϵ!r" # ϵr!r" − ϵB and GB!r; r0;ω" is the electro-
magnetic Green’s tensor in the background medium of
permittivity ϵB [9]. For practical solutions of Eq. (6),
we use the expansion technique of [10] with an additional
iteration of k0 to make the solution self-consistent.

We first consider a 2D finite-sized hexagonal crystallite
of high-index rods in air with a single missing rod in the
center. The rods have relative permittivity ϵr # 11.4 and
radius R # 0.15a, where a is the lattice constant, and we
focus on out of plane polarization. TheQ-value of the cav-
ity depends on the number of rod layers N , and for the
case of N # 1, the top panel in Fig. 2 shows the agree-
ment between the two independent methods for calculat-
ing the cavity modes. In particular, both methods clearly
pick up the divergence in the field at large distances.
Figure 3 shows, as a function of the size of the calculation
domain, the effective mode volume in Eq. (5) along with
the common definition in Eq. (2). Whereas VQ

eff converges
quickly to the limiting values, VN

eff clearly increases with
the size of the calculation domain.

The initial linear divergence in VN
eff with the size of the

normalization domain derives from the small but nonzero
field immediately outside the crystallite; cf. Fig. 2. At lar-
ger R, the field, and hence VN

eff , diverges exponentially.
For increasing Q, the linear divergence with domain size
becomes less pronounced, suggesting how the two form-
alisms provide the same result for infinite Q.

(a)

(b)

Fig. 2. (Color online) (a) Field along the x-axis of the cavity
mode in the 2D crystallite for the case of N # 1. Blue solid line
shows the Fredholm type solution, and black circles show the
calculation using FDTD. Inset shows long distance behavior on
a logarithmic scale. (b) Field along the x-axis of the cavity mode
for the case of N # 2. Inset shows the field distribution in the
xy-plane.
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Optical microcavities are inherently dissipative and are
typically characterized by a quality factor, or Q-value, de-
scribing the relative energy loss per cycle as well as an
effective mode volume, Veff , which measures the spatial
confinement of light in the cavity [1]. Cavities with high
Q-values and small mode volumes provide enhanced
light-matter interaction and are of both fundamental
and technological interest. Effective mode volumes are
ubiquitous in physics and connect to a wide range of op-
tical phenomena. As a striking example of the use of
mode volumes, an emitter at the field antinode in an op-
tical cavity will experience a medium-enhanced radiation
rate relative to that in a homogeneous medium given by
the so-called Purcell factor [2]
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where λc is the free space wavelength, and nc is the
material refractive index at the field antinode rc. Mode
volumes are often attributed to the physically appealing
idea of a single cavity mode. However, in spite of the
fact that cavity modes are widely used in the literature,
more often than not there is a disturbing lack of a precise
definition, and their mathematical properties there-
fore remain unspecified. The name might suggest that
cavity modes are localized and vanish at large distances,
similar to the bound states of the hydrogen atom. In
fact, the opposite is true—for any finite Q, the cavity
modes necessarily diverge exponentially at sufficiently
large distances. This effectively renders the calcula-
tion of an effective mode volume nontrivial. In particu-
lar, defining ϵr"r# as the relative permittivity and
~fc"r# as the cavity mode, the common (normal mode)
prescription
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is inapplicable because the integral diverges. For high-Q
cavities, regularization of the integral in Eq. (2) by intro-
ducing a cut-off has provided good correspondence with
experimental results [3,4], but the mathematical basis
and the limits of such an approach remain unclear.

In this Letter, we introduce a generalized mode vo-
lume, which is defined in a precise and unambiguous
way for cavities with arbitrary Q and which recovers
Eq. (2) in the limit of infinite Q. For general resonant
structures, this provides the proper theoretical frame-
work for the Purcell factor and other optical phenomena
that may be interpreted in terms of mode volumes. In par-
ticular, the generalized mode volume applies also to
structures with complex permittivity for which the lim-
ited validity of Eq. (2) has recently been pointed out
[5]. We first argue that the term “cavity mode” can only
be meaningfully defined as a solution to the wave equa-
tion with outgoing wave boundary conditions. This defi-
nition renders the cavity modes identical to the so-called
quasinormal modes [6], and we show how this definition
complies with two different numerical calculation meth-
ods including finite-difference time-domain (FDTD). In
particular, we elucidate how the modes from both calcu-
lation methods show an exponential divergence. Figure 1
shows a sketch of an example cavity along with the mode
profile. For this cavity mode, we show explicitly how the
integral in Eq. (2) diverges as a function of the integration
volume V , and we emphasize that this will be the case for
all cavities with a finite Q. For high-Q cavities, however,
the divergence in the cavity modes is slow and may not
be discernible in practical calculations due to limited
numerical accuracy.

The electric field satisfies the wave equation with gen-
eral solutions of the form E"r; t# ! E"r;ω# expf−iωtg. The
position-dependent field E"r;ω# solves the equation
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Fig. 1. (Color online) Sketch of a photonic crystal (lattice con-
stant a) in a membrane of high refractive index. A defect cavity
is formed by the omission of a single hole. Right: absolute value
of the cavity mode in the planes z ! 0 (top) and y ! 0 (bottom).
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where k0 # ω∕c is the ratio of the angular frequency to
the speed of light. We define the cavity modes as the
solutions to Eq. (3) with outgoing wave boundary condi-
tions (the Sommerfeld radiation condition [7]). This
choice of boundary conditions renders the problem
non-Hermitian with a discrete spectrum. In order to
distinguish from the normal modes of Hermitian eigen-
value problems, we denote the vector eigenfunctions
with a tilde as ~fμ!r". The corresponding eigenfrequencies
~ωμ # ~ωR

μ $ i~ωI
μ are in general complex with ~ωI

μ < 0, and
the Q-value is obtained immediately as Q # −~ωR

μ∕2~ωI
μ.

This, together with the examples below, show that the
above definition is completely consistent with the ex-
pected properties of cavity modes. At large distances,
the boundary conditions force the modes to behave as
outgoing waves of the form ~f!r" ∝ exp!ik0r"∕
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[two-dimensional (2D)] and ~f!r" ∝ exp!ik0r"∕r [three-
dimensional (3D)], where r # jrj, and since k0 #
kR0 $ ikI0 with kI0 < 0, they diverge exponentially as
r → ∞. Despite their divergence, the cavity modes may
be normalized as [6]
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where ∂V denotes the border of the volume V . The limit
V → ∞ is calculated in practice by increasing the volume
to obtain convergence. For the systems that we investi-
gate below (and for all systems that we have investi-
gated), the convergence is remarkably fast. For very
low-Q cavities, however, the convergence is nontrivial
due to the exponential divergence of the modes that
may cause the inner product to oscillate around the prop-
er value as a function of calculation domain size. The im-
plicit assumption behind the notion of a cavity mode is
that one mode ~fμ # ~fc dominates the expansion of the
electromagnetic Green’s tensor in the cavity [6]. One
can use this assumption and the normalization in Eq. (4)
to recover Eq. (1) with the effective mode volume
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where the generalized mode volume vQ # vRQ $ ivIQ is
complex in general. This prescription provides a direct
and unambiguous way of calculating the effective mode
volume for arbitrary cavities.
For calculations of cavity modes in general structures,

the currently most popular option within the photonics
community is arguably to apply FDTD with perfectly
matched layers to calculate the modes as the resonant
fields that are excited by an initial short input pulse
[8]. Another option is to calculate the cavity modes from
a Fredholm type equation of the form
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where Δϵ!r" # ϵr!r" − ϵB and GB!r; r0;ω" is the electro-
magnetic Green’s tensor in the background medium of
permittivity ϵB [9]. For practical solutions of Eq. (6),
we use the expansion technique of [10] with an additional
iteration of k0 to make the solution self-consistent.

We first consider a 2D finite-sized hexagonal crystallite
of high-index rods in air with a single missing rod in the
center. The rods have relative permittivity ϵr # 11.4 and
radius R # 0.15a, where a is the lattice constant, and we
focus on out of plane polarization. TheQ-value of the cav-
ity depends on the number of rod layers N , and for the
case of N # 1, the top panel in Fig. 2 shows the agree-
ment between the two independent methods for calculat-
ing the cavity modes. In particular, both methods clearly
pick up the divergence in the field at large distances.
Figure 3 shows, as a function of the size of the calculation
domain, the effective mode volume in Eq. (5) along with
the common definition in Eq. (2). Whereas VQ

eff converges
quickly to the limiting values, VN

eff clearly increases with
the size of the calculation domain.

The initial linear divergence in VN
eff with the size of the

normalization domain derives from the small but nonzero
field immediately outside the crystallite; cf. Fig. 2. At lar-
ger R, the field, and hence VN

eff , diverges exponentially.
For increasing Q, the linear divergence with domain size
becomes less pronounced, suggesting how the two form-
alisms provide the same result for infinite Q.

(a)

(b)

Fig. 2. (Color online) (a) Field along the x-axis of the cavity
mode in the 2D crystallite for the case of N # 1. Blue solid line
shows the Fredholm type solution, and black circles show the
calculation using FDTD. Inset shows long distance behavior on
a logarithmic scale. (b) Field along the x-axis of the cavity mode
for the case of N # 2. Inset shows the field distribution in the
xy-plane.
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Optical microcavities are inherently dissipative and are
typically characterized by a quality factor, or Q-value, de-
scribing the relative energy loss per cycle as well as an
effective mode volume, Veff , which measures the spatial
confinement of light in the cavity [1]. Cavities with high
Q-values and small mode volumes provide enhanced
light-matter interaction and are of both fundamental
and technological interest. Effective mode volumes are
ubiquitous in physics and connect to a wide range of op-
tical phenomena. As a striking example of the use of
mode volumes, an emitter at the field antinode in an op-
tical cavity will experience a medium-enhanced radiation
rate relative to that in a homogeneous medium given by
the so-called Purcell factor [2]
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where λc is the free space wavelength, and nc is the
material refractive index at the field antinode rc. Mode
volumes are often attributed to the physically appealing
idea of a single cavity mode. However, in spite of the
fact that cavity modes are widely used in the literature,
more often than not there is a disturbing lack of a precise
definition, and their mathematical properties there-
fore remain unspecified. The name might suggest that
cavity modes are localized and vanish at large distances,
similar to the bound states of the hydrogen atom. In
fact, the opposite is true—for any finite Q, the cavity
modes necessarily diverge exponentially at sufficiently
large distances. This effectively renders the calcula-
tion of an effective mode volume nontrivial. In particu-
lar, defining ϵr"r# as the relative permittivity and
~fc"r# as the cavity mode, the common (normal mode)
prescription
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is inapplicable because the integral diverges. For high-Q
cavities, regularization of the integral in Eq. (2) by intro-
ducing a cut-off has provided good correspondence with
experimental results [3,4], but the mathematical basis
and the limits of such an approach remain unclear.

In this Letter, we introduce a generalized mode vo-
lume, which is defined in a precise and unambiguous
way for cavities with arbitrary Q and which recovers
Eq. (2) in the limit of infinite Q. For general resonant
structures, this provides the proper theoretical frame-
work for the Purcell factor and other optical phenomena
that may be interpreted in terms of mode volumes. In par-
ticular, the generalized mode volume applies also to
structures with complex permittivity for which the lim-
ited validity of Eq. (2) has recently been pointed out
[5]. We first argue that the term “cavity mode” can only
be meaningfully defined as a solution to the wave equa-
tion with outgoing wave boundary conditions. This defi-
nition renders the cavity modes identical to the so-called
quasinormal modes [6], and we show how this definition
complies with two different numerical calculation meth-
ods including finite-difference time-domain (FDTD). In
particular, we elucidate how the modes from both calcu-
lation methods show an exponential divergence. Figure 1
shows a sketch of an example cavity along with the mode
profile. For this cavity mode, we show explicitly how the
integral in Eq. (2) diverges as a function of the integration
volume V , and we emphasize that this will be the case for
all cavities with a finite Q. For high-Q cavities, however,
the divergence in the cavity modes is slow and may not
be discernible in practical calculations due to limited
numerical accuracy.

The electric field satisfies the wave equation with gen-
eral solutions of the form E"r; t# ! E"r;ω# expf−iωtg. The
position-dependent field E"r;ω# solves the equation
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Fig. 1. (Color online) Sketch of a photonic crystal (lattice con-
stant a) in a membrane of high refractive index. A defect cavity
is formed by the omission of a single hole. Right: absolute value
of the cavity mode in the planes z ! 0 (top) and y ! 0 (bottom).
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∇ ×∇ × E!r;ω" − k20ϵr!r"E!r;ω" # 0; (3)

where k0 # ω∕c is the ratio of the angular frequency to
the speed of light. We define the cavity modes as the
solutions to Eq. (3) with outgoing wave boundary condi-
tions (the Sommerfeld radiation condition [7]). This
choice of boundary conditions renders the problem
non-Hermitian with a discrete spectrum. In order to
distinguish from the normal modes of Hermitian eigen-
value problems, we denote the vector eigenfunctions
with a tilde as ~fμ!r". The corresponding eigenfrequencies
~ωμ # ~ωR

μ $ i~ωI
μ are in general complex with ~ωI

μ < 0, and
the Q-value is obtained immediately as Q # −~ωR

μ∕2~ωI
μ.

This, together with the examples below, show that the
above definition is completely consistent with the ex-
pected properties of cavity modes. At large distances,
the boundary conditions force the modes to behave as
outgoing waves of the form ~f!r" ∝ exp!ik0r"∕

!!!
r

p

[two-dimensional (2D)] and ~f!r" ∝ exp!ik0r"∕r [three-
dimensional (3D)], where r # jrj, and since k0 #
kR0 $ ikI0 with kI0 < 0, they diverge exponentially as
r → ∞. Despite their divergence, the cavity modes may
be normalized as [6]

hh~fμj~fλii # lim
V→∞

Z

V
ϵr!r"~fμ!r" · ~fλ!r"dr

$ i
!!!!!ϵr

p
c

~ωμ $ ~ωλ

Z

∂V

~fμ!r" · ~fλ!r"dr # δμ;λ; (4)

where ∂V denotes the border of the volume V . The limit
V → ∞ is calculated in practice by increasing the volume
to obtain convergence. For the systems that we investi-
gate below (and for all systems that we have investi-
gated), the convergence is remarkably fast. For very
low-Q cavities, however, the convergence is nontrivial
due to the exponential divergence of the modes that
may cause the inner product to oscillate around the prop-
er value as a function of calculation domain size. The im-
plicit assumption behind the notion of a cavity mode is
that one mode ~fμ # ~fc dominates the expansion of the
electromagnetic Green’s tensor in the cavity [6]. One
can use this assumption and the normalization in Eq. (4)
to recover Eq. (1) with the effective mode volume

1

VQ
eff
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"
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vQ

#
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hh~fcj~fcii
ϵr!rc"~f2c!rc"

; (5)

where the generalized mode volume vQ # vRQ $ ivIQ is
complex in general. This prescription provides a direct
and unambiguous way of calculating the effective mode
volume for arbitrary cavities.
For calculations of cavity modes in general structures,

the currently most popular option within the photonics
community is arguably to apply FDTD with perfectly
matched layers to calculate the modes as the resonant
fields that are excited by an initial short input pulse
[8]. Another option is to calculate the cavity modes from
a Fredholm type equation of the form

E!r;ω" #
$ω
c

%
2 Z

V
GB!r; r0;ω"Δϵ!r0"E!r0;ω"dr0; (6)

where Δϵ!r" # ϵr!r" − ϵB and GB!r; r0;ω" is the electro-
magnetic Green’s tensor in the background medium of
permittivity ϵB [9]. For practical solutions of Eq. (6),
we use the expansion technique of [10] with an additional
iteration of k0 to make the solution self-consistent.

We first consider a 2D finite-sized hexagonal crystallite
of high-index rods in air with a single missing rod in the
center. The rods have relative permittivity ϵr # 11.4 and
radius R # 0.15a, where a is the lattice constant, and we
focus on out of plane polarization. TheQ-value of the cav-
ity depends on the number of rod layers N , and for the
case of N # 1, the top panel in Fig. 2 shows the agree-
ment between the two independent methods for calculat-
ing the cavity modes. In particular, both methods clearly
pick up the divergence in the field at large distances.
Figure 3 shows, as a function of the size of the calculation
domain, the effective mode volume in Eq. (5) along with
the common definition in Eq. (2). Whereas VQ

eff converges
quickly to the limiting values, VN

eff clearly increases with
the size of the calculation domain.

The initial linear divergence in VN
eff with the size of the

normalization domain derives from the small but nonzero
field immediately outside the crystallite; cf. Fig. 2. At lar-
ger R, the field, and hence VN

eff , diverges exponentially.
For increasing Q, the linear divergence with domain size
becomes less pronounced, suggesting how the two form-
alisms provide the same result for infinite Q.

(a)

(b)

Fig. 2. (Color online) (a) Field along the x-axis of the cavity
mode in the 2D crystallite for the case of N # 1. Blue solid line
shows the Fredholm type solution, and black circles show the
calculation using FDTD. Inset shows long distance behavior on
a logarithmic scale. (b) Field along the x-axis of the cavity mode
for the case of N # 2. Inset shows the field distribution in the
xy-plane.
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We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and
leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on
the mode calculationmethods typically applied in the literature, andwhich allows one to compute the Purcell effect
and other interesting optical phenomena in a rigorous and unambiguous way. © 2012 Optical Society of America
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Optical microcavities are inherently dissipative and are
typically characterized by a quality factor, or Q-value, de-
scribing the relative energy loss per cycle as well as an
effective mode volume, Veff , which measures the spatial
confinement of light in the cavity [1]. Cavities with high
Q-values and small mode volumes provide enhanced
light-matter interaction and are of both fundamental
and technological interest. Effective mode volumes are
ubiquitous in physics and connect to a wide range of op-
tical phenomena. As a striking example of the use of
mode volumes, an emitter at the field antinode in an op-
tical cavity will experience a medium-enhanced radiation
rate relative to that in a homogeneous medium given by
the so-called Purcell factor [2]

FP !
3
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!λc
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"
3
!

Q
Veff

"
; (1)

where λc is the free space wavelength, and nc is the
material refractive index at the field antinode rc. Mode
volumes are often attributed to the physically appealing
idea of a single cavity mode. However, in spite of the
fact that cavity modes are widely used in the literature,
more often than not there is a disturbing lack of a precise
definition, and their mathematical properties there-
fore remain unspecified. The name might suggest that
cavity modes are localized and vanish at large distances,
similar to the bound states of the hydrogen atom. In
fact, the opposite is true—for any finite Q, the cavity
modes necessarily diverge exponentially at sufficiently
large distances. This effectively renders the calcula-
tion of an effective mode volume nontrivial. In particu-
lar, defining ϵr"r# as the relative permittivity and
~fc"r# as the cavity mode, the common (normal mode)
prescription

VN
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ϵr"r#j~fc"r#j2

ϵr"rc#j~fc"rc#j2
dr (2)

is inapplicable because the integral diverges. For high-Q
cavities, regularization of the integral in Eq. (2) by intro-
ducing a cut-off has provided good correspondence with
experimental results [3,4], but the mathematical basis
and the limits of such an approach remain unclear.

In this Letter, we introduce a generalized mode vo-
lume, which is defined in a precise and unambiguous
way for cavities with arbitrary Q and which recovers
Eq. (2) in the limit of infinite Q. For general resonant
structures, this provides the proper theoretical frame-
work for the Purcell factor and other optical phenomena
that may be interpreted in terms of mode volumes. In par-
ticular, the generalized mode volume applies also to
structures with complex permittivity for which the lim-
ited validity of Eq. (2) has recently been pointed out
[5]. We first argue that the term “cavity mode” can only
be meaningfully defined as a solution to the wave equa-
tion with outgoing wave boundary conditions. This defi-
nition renders the cavity modes identical to the so-called
quasinormal modes [6], and we show how this definition
complies with two different numerical calculation meth-
ods including finite-difference time-domain (FDTD). In
particular, we elucidate how the modes from both calcu-
lation methods show an exponential divergence. Figure 1
shows a sketch of an example cavity along with the mode
profile. For this cavity mode, we show explicitly how the
integral in Eq. (2) diverges as a function of the integration
volume V , and we emphasize that this will be the case for
all cavities with a finite Q. For high-Q cavities, however,
the divergence in the cavity modes is slow and may not
be discernible in practical calculations due to limited
numerical accuracy.

The electric field satisfies the wave equation with gen-
eral solutions of the form E"r; t# ! E"r;ω# expf−iωtg. The
position-dependent field E"r;ω# solves the equation
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Fig. 1. (Color online) Sketch of a photonic crystal (lattice con-
stant a) in a membrane of high refractive index. A defect cavity
is formed by the omission of a single hole. Right: absolute value
of the cavity mode in the planes z ! 0 (top) and y ! 0 (bottom).
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∇ ×∇ × E!r;ω" − k20ϵr!r"E!r;ω" # 0; (3)

where k0 # ω∕c is the ratio of the angular frequency to
the speed of light. We define the cavity modes as the
solutions to Eq. (3) with outgoing wave boundary condi-
tions (the Sommerfeld radiation condition [7]). This
choice of boundary conditions renders the problem
non-Hermitian with a discrete spectrum. In order to
distinguish from the normal modes of Hermitian eigen-
value problems, we denote the vector eigenfunctions
with a tilde as ~fμ!r". The corresponding eigenfrequencies
~ωμ # ~ωR

μ $ i~ωI
μ are in general complex with ~ωI

μ < 0, and
the Q-value is obtained immediately as Q # −~ωR

μ∕2~ωI
μ.

This, together with the examples below, show that the
above definition is completely consistent with the ex-
pected properties of cavity modes. At large distances,
the boundary conditions force the modes to behave as
outgoing waves of the form ~f!r" ∝ exp!ik0r"∕

!!!
r

p

[two-dimensional (2D)] and ~f!r" ∝ exp!ik0r"∕r [three-
dimensional (3D)], where r # jrj, and since k0 #
kR0 $ ikI0 with kI0 < 0, they diverge exponentially as
r → ∞. Despite their divergence, the cavity modes may
be normalized as [6]

hh~fμj~fλii # lim
V→∞
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ϵr!r"~fμ!r" · ~fλ!r"dr
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~fμ!r" · ~fλ!r"dr # δμ;λ; (4)

where ∂V denotes the border of the volume V . The limit
V → ∞ is calculated in practice by increasing the volume
to obtain convergence. For the systems that we investi-
gate below (and for all systems that we have investi-
gated), the convergence is remarkably fast. For very
low-Q cavities, however, the convergence is nontrivial
due to the exponential divergence of the modes that
may cause the inner product to oscillate around the prop-
er value as a function of calculation domain size. The im-
plicit assumption behind the notion of a cavity mode is
that one mode ~fμ # ~fc dominates the expansion of the
electromagnetic Green’s tensor in the cavity [6]. One
can use this assumption and the normalization in Eq. (4)
to recover Eq. (1) with the effective mode volume
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where the generalized mode volume vQ # vRQ $ ivIQ is
complex in general. This prescription provides a direct
and unambiguous way of calculating the effective mode
volume for arbitrary cavities.
For calculations of cavity modes in general structures,

the currently most popular option within the photonics
community is arguably to apply FDTD with perfectly
matched layers to calculate the modes as the resonant
fields that are excited by an initial short input pulse
[8]. Another option is to calculate the cavity modes from
a Fredholm type equation of the form

E!r;ω" #
$ω
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%
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V
GB!r; r0;ω"Δϵ!r0"E!r0;ω"dr0; (6)

where Δϵ!r" # ϵr!r" − ϵB and GB!r; r0;ω" is the electro-
magnetic Green’s tensor in the background medium of
permittivity ϵB [9]. For practical solutions of Eq. (6),
we use the expansion technique of [10] with an additional
iteration of k0 to make the solution self-consistent.

We first consider a 2D finite-sized hexagonal crystallite
of high-index rods in air with a single missing rod in the
center. The rods have relative permittivity ϵr # 11.4 and
radius R # 0.15a, where a is the lattice constant, and we
focus on out of plane polarization. TheQ-value of the cav-
ity depends on the number of rod layers N , and for the
case of N # 1, the top panel in Fig. 2 shows the agree-
ment between the two independent methods for calculat-
ing the cavity modes. In particular, both methods clearly
pick up the divergence in the field at large distances.
Figure 3 shows, as a function of the size of the calculation
domain, the effective mode volume in Eq. (5) along with
the common definition in Eq. (2). Whereas VQ

eff converges
quickly to the limiting values, VN

eff clearly increases with
the size of the calculation domain.

The initial linear divergence in VN
eff with the size of the

normalization domain derives from the small but nonzero
field immediately outside the crystallite; cf. Fig. 2. At lar-
ger R, the field, and hence VN

eff , diverges exponentially.
For increasing Q, the linear divergence with domain size
becomes less pronounced, suggesting how the two form-
alisms provide the same result for infinite Q.

(a)

(b)

Fig. 2. (Color online) (a) Field along the x-axis of the cavity
mode in the 2D crystallite for the case of N # 1. Blue solid line
shows the Fredholm type solution, and black circles show the
calculation using FDTD. Inset shows long distance behavior on
a logarithmic scale. (b) Field along the x-axis of the cavity mode
for the case of N # 2. Inset shows the field distribution in the
xy-plane.
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We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and
leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on
the mode calculationmethods typically applied in the literature, andwhich allows one to compute the Purcell effect
and other interesting optical phenomena in a rigorous and unambiguous way. © 2012 Optical Society of America
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Optical microcavities are inherently dissipative and are
typically characterized by a quality factor, or Q-value, de-
scribing the relative energy loss per cycle as well as an
effective mode volume, Veff , which measures the spatial
confinement of light in the cavity [1]. Cavities with high
Q-values and small mode volumes provide enhanced
light-matter interaction and are of both fundamental
and technological interest. Effective mode volumes are
ubiquitous in physics and connect to a wide range of op-
tical phenomena. As a striking example of the use of
mode volumes, an emitter at the field antinode in an op-
tical cavity will experience a medium-enhanced radiation
rate relative to that in a homogeneous medium given by
the so-called Purcell factor [2]

FP !
3
4π2

!λc
nc

"
3
!

Q
Veff

"
; (1)

where λc is the free space wavelength, and nc is the
material refractive index at the field antinode rc. Mode
volumes are often attributed to the physically appealing
idea of a single cavity mode. However, in spite of the
fact that cavity modes are widely used in the literature,
more often than not there is a disturbing lack of a precise
definition, and their mathematical properties there-
fore remain unspecified. The name might suggest that
cavity modes are localized and vanish at large distances,
similar to the bound states of the hydrogen atom. In
fact, the opposite is true—for any finite Q, the cavity
modes necessarily diverge exponentially at sufficiently
large distances. This effectively renders the calcula-
tion of an effective mode volume nontrivial. In particu-
lar, defining ϵr"r# as the relative permittivity and
~fc"r# as the cavity mode, the common (normal mode)
prescription
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ϵr"rc#j~fc"rc#j2
dr (2)

is inapplicable because the integral diverges. For high-Q
cavities, regularization of the integral in Eq. (2) by intro-
ducing a cut-off has provided good correspondence with
experimental results [3,4], but the mathematical basis
and the limits of such an approach remain unclear.

In this Letter, we introduce a generalized mode vo-
lume, which is defined in a precise and unambiguous
way for cavities with arbitrary Q and which recovers
Eq. (2) in the limit of infinite Q. For general resonant
structures, this provides the proper theoretical frame-
work for the Purcell factor and other optical phenomena
that may be interpreted in terms of mode volumes. In par-
ticular, the generalized mode volume applies also to
structures with complex permittivity for which the lim-
ited validity of Eq. (2) has recently been pointed out
[5]. We first argue that the term “cavity mode” can only
be meaningfully defined as a solution to the wave equa-
tion with outgoing wave boundary conditions. This defi-
nition renders the cavity modes identical to the so-called
quasinormal modes [6], and we show how this definition
complies with two different numerical calculation meth-
ods including finite-difference time-domain (FDTD). In
particular, we elucidate how the modes from both calcu-
lation methods show an exponential divergence. Figure 1
shows a sketch of an example cavity along with the mode
profile. For this cavity mode, we show explicitly how the
integral in Eq. (2) diverges as a function of the integration
volume V , and we emphasize that this will be the case for
all cavities with a finite Q. For high-Q cavities, however,
the divergence in the cavity modes is slow and may not
be discernible in practical calculations due to limited
numerical accuracy.

The electric field satisfies the wave equation with gen-
eral solutions of the form E"r; t# ! E"r;ω# expf−iωtg. The
position-dependent field E"r;ω# solves the equation
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Fig. 1. (Color online) Sketch of a photonic crystal (lattice con-
stant a) in a membrane of high refractive index. A defect cavity
is formed by the omission of a single hole. Right: absolute value
of the cavity mode in the planes z ! 0 (top) and y ! 0 (bottom).
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∇ ×∇ × E!r;ω" − k20ϵr!r"E!r;ω" # 0; (3)

where k0 # ω∕c is the ratio of the angular frequency to
the speed of light. We define the cavity modes as the
solutions to Eq. (3) with outgoing wave boundary condi-
tions (the Sommerfeld radiation condition [7]). This
choice of boundary conditions renders the problem
non-Hermitian with a discrete spectrum. In order to
distinguish from the normal modes of Hermitian eigen-
value problems, we denote the vector eigenfunctions
with a tilde as ~fμ!r". The corresponding eigenfrequencies
~ωμ # ~ωR

μ $ i~ωI
μ are in general complex with ~ωI

μ < 0, and
the Q-value is obtained immediately as Q # −~ωR

μ∕2~ωI
μ.

This, together with the examples below, show that the
above definition is completely consistent with the ex-
pected properties of cavity modes. At large distances,
the boundary conditions force the modes to behave as
outgoing waves of the form ~f!r" ∝ exp!ik0r"∕
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p

[two-dimensional (2D)] and ~f!r" ∝ exp!ik0r"∕r [three-
dimensional (3D)], where r # jrj, and since k0 #
kR0 $ ikI0 with kI0 < 0, they diverge exponentially as
r → ∞. Despite their divergence, the cavity modes may
be normalized as [6]
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where ∂V denotes the border of the volume V . The limit
V → ∞ is calculated in practice by increasing the volume
to obtain convergence. For the systems that we investi-
gate below (and for all systems that we have investi-
gated), the convergence is remarkably fast. For very
low-Q cavities, however, the convergence is nontrivial
due to the exponential divergence of the modes that
may cause the inner product to oscillate around the prop-
er value as a function of calculation domain size. The im-
plicit assumption behind the notion of a cavity mode is
that one mode ~fμ # ~fc dominates the expansion of the
electromagnetic Green’s tensor in the cavity [6]. One
can use this assumption and the normalization in Eq. (4)
to recover Eq. (1) with the effective mode volume
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where the generalized mode volume vQ # vRQ $ ivIQ is
complex in general. This prescription provides a direct
and unambiguous way of calculating the effective mode
volume for arbitrary cavities.
For calculations of cavity modes in general structures,

the currently most popular option within the photonics
community is arguably to apply FDTD with perfectly
matched layers to calculate the modes as the resonant
fields that are excited by an initial short input pulse
[8]. Another option is to calculate the cavity modes from
a Fredholm type equation of the form

E!r;ω" #
$ω
c

%
2 Z

V
GB!r; r0;ω"Δϵ!r0"E!r0;ω"dr0; (6)

where Δϵ!r" # ϵr!r" − ϵB and GB!r; r0;ω" is the electro-
magnetic Green’s tensor in the background medium of
permittivity ϵB [9]. For practical solutions of Eq. (6),
we use the expansion technique of [10] with an additional
iteration of k0 to make the solution self-consistent.

We first consider a 2D finite-sized hexagonal crystallite
of high-index rods in air with a single missing rod in the
center. The rods have relative permittivity ϵr # 11.4 and
radius R # 0.15a, where a is the lattice constant, and we
focus on out of plane polarization. TheQ-value of the cav-
ity depends on the number of rod layers N , and for the
case of N # 1, the top panel in Fig. 2 shows the agree-
ment between the two independent methods for calculat-
ing the cavity modes. In particular, both methods clearly
pick up the divergence in the field at large distances.
Figure 3 shows, as a function of the size of the calculation
domain, the effective mode volume in Eq. (5) along with
the common definition in Eq. (2). Whereas VQ

eff converges
quickly to the limiting values, VN

eff clearly increases with
the size of the calculation domain.

The initial linear divergence in VN
eff with the size of the

normalization domain derives from the small but nonzero
field immediately outside the crystallite; cf. Fig. 2. At lar-
ger R, the field, and hence VN

eff , diverges exponentially.
For increasing Q, the linear divergence with domain size
becomes less pronounced, suggesting how the two form-
alisms provide the same result for infinite Q.

(a)

(b)

Fig. 2. (Color online) (a) Field along the x-axis of the cavity
mode in the 2D crystallite for the case of N # 1. Blue solid line
shows the Fredholm type solution, and black circles show the
calculation using FDTD. Inset shows long distance behavior on
a logarithmic scale. (b) Field along the x-axis of the cavity mode
for the case of N # 2. Inset shows the field distribution in the
xy-plane.
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ !
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q ! ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl ! 8.9) cylinders of radius r ! 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc"r#j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc !
0.39687 − 0.00136i corresponding to Q ! 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y ! 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r ! rc in the center of the cavity.
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decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R!ω" #
$Im! ~ω"%2

$ω − Re! ~ω"%2 & $Im! ~ω"%2
; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x # 0) as a function of
znorm ≡ !z − zcav"∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm # 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav # 2a (green solid curve). The
envelope of the QNM with dcav # 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav # 4a, red
dotted curve, and dcav # 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw # nBack & Δw!nRods − nBack"; (16a)

Δ2#Δ8#0.9; Δ3#Δ7#0.6; Δ4#Δ6#0.3; (16b)

with nRods #
!!!!!!!!!!!
ϵRods

p
and nBack # !!!!!!!!!!!

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for
Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re! ~ω" [2πc∕a] Im! ~ω" [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x # 0) as function of znorm ≡ !z − zcav"∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM
Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R
jE5

y − Ew
y jdr∕

R
jE5

yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10

de Lasson et al. Vol. 31, No. 10 / October 2014 / J. Opt. Soc. Am. A 2147

[J. R. de Lasson et al., J. Opt. Soc. Am. A 31, 2142 (2014)]

{Eµ; ω̃µ}

[L. Novotny and B. Hecht,
”Principles of Nano-Optics” (2012)]

Γ(r;ω) = πω

~ε0
|p|2ρ(r;ω)

LDOS

ρ(r;ω) = 2ω
πc2 Im [n̂α ·G(r, r;ω) · n̂α]

G(r, r′;ω) = c2

2
∑
µ

Eµ(r)⊗Eµ(r′)
ω̃µ(ω̃µ − ω)

See also: [C. Sauvan et al., Phys. Rev. Lett. 110, 237401 (2013)]
[R.-C. Ge et al., New J. Phys. 16, 113048 (2014)]

ρ(r;ω) = ω

π

∑
µ

Im
[
n̂α ·

Eµ(r)⊗Eµ(r)
ω̃µ(ω̃µ − ω) · n̂α

]
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ !
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q ! ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl ! 8.9) cylinders of radius r ! 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc"r#j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc !
0.39687 − 0.00136i corresponding to Q ! 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y ! 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r ! rc in the center of the cavity.
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decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R!ω" #
$Im! ~ω"%2

$ω − Re! ~ω"%2 & $Im! ~ω"%2
; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x # 0) as a function of
znorm ≡ !z − zcav"∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm # 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav # 2a (green solid curve). The
envelope of the QNM with dcav # 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav # 4a, red
dotted curve, and dcav # 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw # nBack & Δw!nRods − nBack"; (16a)

Δ2#Δ8#0.9; Δ3#Δ7#0.6; Δ4#Δ6#0.3; (16b)

with nRods #
!!!!!!!!!!!
ϵRods

p
and nBack # !!!!!!!!!!!

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for
Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re! ~ω" [2πc∕a] Im! ~ω" [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x # 0) as function of znorm ≡ !z − zcav"∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM
Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R
jE5

y − Ew
y jdr∕

R
jE5

yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10
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[J. R. de Lasson et al., J. Opt. Soc. Am. A 31, 2142 (2014)]

{Eµ; ω̃µ}

[L. Novotny and B. Hecht,
”Principles of Nano-Optics” (2012)]

Γ(r;ω) = πω

~ε0
|p|2ρ(r;ω)

LDOS

ρ(r;ω) = 2ω
πc2 Im [n̂α ·G(r, r;ω) · n̂α]

G(r, r′;ω) = c2

2
∑
µ

Eµ(r)⊗Eµ(r′)
ω̃µ(ω̃µ − ω)

See also: [C. Sauvan et al., Phys. Rev. Lett. 110, 237401 (2013)]
[R.-C. Ge et al., New J. Phys. 16, 113048 (2014)]

ρ(r;ω) = ω

π

∑
µ
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ !
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q ! ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl ! 8.9) cylinders of radius r ! 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc"r#j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc !
0.39687 − 0.00136i corresponding to Q ! 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y ! 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r ! rc in the center of the cavity.
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decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R!ω" #
$Im! ~ω"%2

$ω − Re! ~ω"%2 & $Im! ~ω"%2
; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x # 0) as a function of
znorm ≡ !z − zcav"∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm # 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav # 2a (green solid curve). The
envelope of the QNM with dcav # 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav # 4a, red
dotted curve, and dcav # 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw # nBack & Δw!nRods − nBack"; (16a)

Δ2#Δ8#0.9; Δ3#Δ7#0.6; Δ4#Δ6#0.3; (16b)

with nRods #
!!!!!!!!!!!
ϵRods

p
and nBack # !!!!!!!!!!!

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for
Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re! ~ω" [2πc∕a] Im! ~ω" [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x # 0) as function of znorm ≡ !z − zcav"∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM
Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R
jE5

y − Ew
y jdr∕

R
jE5

yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ !
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q ! ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl ! 8.9) cylinders of radius r ! 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc"r#j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc !
0.39687 − 0.00136i corresponding to Q ! 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y ! 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r ! rc in the center of the cavity.

November 15, 2014 / Vol. 39, No. 22 / OPTICS LETTERS 6359

0146-9592/14/226359-04$15.00/0 © 2014 Optical Society of America

[P. T. Kristensen et al., Opt. Lett. 39, 6359 (2014)]

decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R!ω" #
$Im! ~ω"%2

$ω − Re! ~ω"%2 & $Im! ~ω"%2
; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x # 0) as a function of
znorm ≡ !z − zcav"∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm # 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav # 2a (green solid curve). The
envelope of the QNM with dcav # 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav # 4a, red
dotted curve, and dcav # 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw # nBack & Δw!nRods − nBack"; (16a)

Δ2#Δ8#0.9; Δ3#Δ7#0.6; Δ4#Δ6#0.3; (16b)

with nRods #
!!!!!!!!!!!
ϵRods

p
and nBack # !!!!!!!!!!!

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for
Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re! ~ω" [2πc∕a] Im! ~ω" [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x # 0) as function of znorm ≡ !z − zcav"∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM
Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R
jE5

y − Ew
y jdr∕

R
jE5

yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ !
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q ! ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl ! 8.9) cylinders of radius r ! 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc"r#j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc !
0.39687 − 0.00136i corresponding to Q ! 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y ! 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r ! rc in the center of the cavity.

November 15, 2014 / Vol. 39, No. 22 / OPTICS LETTERS 6359
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[P. T. Kristensen et al., Opt. Lett. 39, 6359 (2014)]

decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R!ω" #
$Im! ~ω"%2

$ω − Re! ~ω"%2 & $Im! ~ω"%2
; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x # 0) as a function of
znorm ≡ !z − zcav"∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm # 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav # 2a (green solid curve). The
envelope of the QNM with dcav # 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav # 4a, red
dotted curve, and dcav # 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw # nBack & Δw!nRods − nBack"; (16a)

Δ2#Δ8#0.9; Δ3#Δ7#0.6; Δ4#Δ6#0.3; (16b)

with nRods #
!!!!!!!!!!!
ϵRods

p
and nBack # !!!!!!!!!!!

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for
Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re! ~ω" [2πc∕a] Im! ~ω" [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x # 0) as function of znorm ≡ !z − zcav"∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM
Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R
jE5

y − Ew
y jdr∕

R
jE5

yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ !
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q ! ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl ! 8.9) cylinders of radius r ! 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc"r#j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc !
0.39687 − 0.00136i corresponding to Q ! 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y ! 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r ! rc in the center of the cavity.
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decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R!ω" #
$Im! ~ω"%2

$ω − Re! ~ω"%2 & $Im! ~ω"%2
; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x # 0) as a function of
znorm ≡ !z − zcav"∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm # 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav # 2a (green solid curve). The
envelope of the QNM with dcav # 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav # 4a, red
dotted curve, and dcav # 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw # nBack & Δw!nRods − nBack"; (16a)

Δ2#Δ8#0.9; Δ3#Δ7#0.6; Δ4#Δ6#0.3; (16b)

with nRods #
!!!!!!!!!!!
ϵRods

p
and nBack # !!!!!!!!!!!

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for
Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re! ~ω" [2πc∕a] Im! ~ω" [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x # 0) as function of znorm ≡ !z − zcav"∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM
Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R
jE5

y − Ew
y jdr∕

R
jE5

yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10
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µ
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ !
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q ! ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl ! 8.9) cylinders of radius r ! 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc"r#j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc !
0.39687 − 0.00136i corresponding to Q ! 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y ! 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r ! rc in the center of the cavity.
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decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R!ω" #
$Im! ~ω"%2

$ω − Re! ~ω"%2 & $Im! ~ω"%2
; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x # 0) as a function of
znorm ≡ !z − zcav"∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm # 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav # 2a (green solid curve). The
envelope of the QNM with dcav # 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav # 4a, red
dotted curve, and dcav # 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw # nBack & Δw!nRods − nBack"; (16a)

Δ2#Δ8#0.9; Δ3#Δ7#0.6; Δ4#Δ6#0.3; (16b)

with nRods #
!!!!!!!!!!!
ϵRods

p
and nBack # !!!!!!!!!!!

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for
Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re! ~ω" [2πc∕a] Im! ~ω" [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x # 0) as function of znorm ≡ !z − zcav"∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM
Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R
jE5

y − Ew
y jdr∕

R
jE5

yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ !
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q ! ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl ! 8.9) cylinders of radius r ! 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc"r#j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc !
0.39687 − 0.00136i corresponding to Q ! 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y ! 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r ! rc in the center of the cavity.
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decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R!ω" #
$Im! ~ω"%2

$ω − Re! ~ω"%2 & $Im! ~ω"%2
; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x # 0) as a function of
znorm ≡ !z − zcav"∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm # 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav # 2a (green solid curve). The
envelope of the QNM with dcav # 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav # 4a, red
dotted curve, and dcav # 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw # nBack & Δw!nRods − nBack"; (16a)

Δ2#Δ8#0.9; Δ3#Δ7#0.6; Δ4#Δ6#0.3; (16b)

with nRods #
!!!!!!!!!!!
ϵRods

p
and nBack # !!!!!!!!!!!

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for
Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re! ~ω" [2πc∕a] Im! ~ω" [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x # 0) as function of znorm ≡ !z − zcav"∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM
Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R
jE5

y − Ew
y jdr∕

R
jE5

yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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842 NATURE | VOL 424 | 14 AUGUST 2003 | www.nature.com/nature

190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect

E tched
holes

Defect region

Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.

P $ !4
3
%2! !!

"
n!"

3 
!
Q
V!

where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.

P $ !4
3
%2! !!

"
n!"

3 
!
Q
V!

where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect

E tched
holes

Defect region

Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).
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Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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power into a single cavity mode (a necessity for efficient coupling to
optical fibres). Instead, the Purcell effect is applied to improve cou-
pling55. Both microdisk68 and micropost-based devices74–76 have been
demonstrated. Significantly, a single photon source that is an electrical-
ly pumped single quantum dot has recently been demonstrated77. An
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190 for 2 !m diameter microdisks52 have been inferred. Q factors as
high as 10,000 with corresponding mode volumes of 1.6 ("/n)3 have
been predicted to exist in optimized micropost cavities57. A post
diameter of 0.5 !m with an improved Q factor of 4,800 yields a Pur-
cell factor of 14756,57. 

Since Yablonovitch first proposed using a photonic crystal for spon-
taneous emission suppression58, much attention has been directed to
photonic bandgap microcavities59,60. As noted earlier, photonic-crystal
defect microcavities can provide extremely small mode volumes7, and
large theoretical Q values have been predicted for certain designs30,61.
Recently, a Qof 4,000 for an H2 (seven holes removed to form the hexa-
gon) defect cavity59 and a Qof 13,00062 for a donor-mode cavity (calcu-
lated mode volume of 1.2 (λ/n)3) were reported. Purcell enhancement
has also been studied in this system60,63. 

Controlling the emission of single photons has been a priority for
quantum encryption systems64. Single-photon sources, which are
required in these systems, are a recent application of the Purcell effect in
quantum-dot microcavities (see Fig. 1). Quantum dots are quasi-atom-
ic systems and hence share many properties with atoms. For example,
emission from a single atom or molecule and from quantum dots67

exhibits non-classical photon anti-bunching behaviour, because, upon
emission, an interval must pass in order for the atom to be re-excited and
to emit a photon65,66. This behaviour in quantum dots has been adapted
to generate triggered single photons68–71. Leading up to this application,
triggered single-photon emission using photo-pumped, single-mole-
cule systems was demonstrated72,73. However, quantum-dot single-
photon sources, which are compact and potentially electrically
pumped, are very appealing for many of the same reasons that semicon-
ductor lasers are so compelling in communications. Unlike lasers, how-
ever, the useful emission in these new quantum sources is a spontaneous
photon; therefore, stimulated emission cannot be relied upon to direct

A two level system will decay spontaneously by interaction with a
vacuum continuum at a rate proportional to the spectral density of
modes per volume evaluated at the transition frequency. Within a
cavity, the density of modes is modified and large swings in its
amplitude can occur. From the viewpoint of cavity modes (which in
the presence of dissipation must be viewed as quasi modes (ref. 4,
chapter 1)), the maximal density of modes occurs at the quasi-mode
resonant frequencies and can greatly exceed the corresponding free-
space density. Historically, Purcell44 arrived at this conclusion by
noting that a single (quasi) mode occupies a spectral bandwidth #/Q
within a cavity of volume V. Normalizing a resulting cavity-enhanced
mode density per unit volume to the mode density of free space
yields the ‘Purcell’ spontaneous emission enhancement factor44,46.
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where refractive index, n, is a modern addition to this expression to
account for emission within dielectrics55. An atom whose transition
falls within the mode linewidth will experience an enhancement to its
spontaneous decay rate given by the Purcell factor. More significantly,
because the enhancement comes about from coupling to only those
continuum modes that make up the corresponding quasi-mode of
the resonator, the spontaneous emission is directed to this quasi
mode88 and has great utility with regard to coupling spontaneous
power. 

In spectral locations that are intermediate to modal resonance
frequencies, the density of the modes can fall well below the density
in free space. With proper cavity design and for operation at these off-
resonance frequencies, spontaneous decay can be suppressed4,46,58.
Rigorous developments of Purcell’s physical model have been

presented on the basis of calculation of the continuum mode density
(ref. 4, chapters 1 and 2 and references therein). 

Design of microcavities for observation of the Purcell effect must
take account of the corresponding atomic (or atom-like) transition
characteristics. Use of a small microcavity volume is important
because enhancements driven by manipulation of Q alone are limited
by the spectral width of the transition. Likewise, all other things being
equal, narrow, atomic transitions can be Purcell-enhanced more as a
higher Q becomes possible. It is for this reason that individual
quantum dots, with their relatively narrow transition widths (compared
with bulk semiconductors), are playing a significant role in this field49

(see Fig. 1). 

Box 2 Figure Purcell enhancement of spontaneous emission. Weak coupling to a
cavity mode will enhance the spontaneous rate of emission by increasing the local
density of modes (right) compared with their density in free space (left).

Box 2
Purcell effect

E tched
holes

Defect region

Figure 3 Cross-sectional illustration of a photonic crystal defect microcavity laser. The
microcavity is formed by dry etching a hexagonal array of holes and subsequent selective
etch of an interior region, creating a thin membrane. One hole is left unetched creating a
‘defect’ in the array and therefore a defect mode in the optical spectrum. The mode
(illustrated in green) is confined to the interior of the array by Bragg reflection in the plane
and conventional waveguiding in the vertical direction. Also, shown in pink are quantum
wells that upon photo pumping provide the amplification necessary for laser oscillation7.
Inset: Scanning electron micrograph of a photonic crystal defect microcavity laser.
Micrograph is courtesy of O. Painter and A. Scherer (Caltech, CA).
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