A Bloch Mode Expansion Approach for Analyzing Quasi-Normal Modes in Open Nanophotonic Structures

<u>Jakob Rosenkrantz de Lasson</u>, Philip Trøst Kristensen, Jesper Mørk and Niels Gregersen

Technical University of Denmark

www.nanophotonics.dk

META'14, May 23 2014

DTU Fotonik Department of Photonics Engineering

 $Q = \frac{\omega_{\rm R}}{\rm FWHM}$

Implicit assumption of the existence of a leaky resonator mode

$$Q = \frac{\omega_{\rm R}}{\rm FWHM}$$

Implicit assumption of the existence of a leaky resonator mode

 $\mathbf{E}(\mathbf{r};t) = \mathbf{E}(\mathbf{r}) \exp\left(-\mathrm{i}\tilde{\omega}t\right), \quad \tilde{\omega} \equiv \omega_{\mathrm{R}} - \mathrm{i}\gamma$

$$Q = \frac{\omega_{\rm R}}{\rm FWHM}$$

Implicit assumption of the existence of a leaky resonator mode $\mathbf{E}(\mathbf{r};t) = \mathbf{E}(\mathbf{r}) \exp\left(-\mathrm{i}\tilde{\omega}t\right), \quad \tilde{\omega} \equiv \omega_{\mathrm{R}} - \mathrm{i}\gamma$

... How to formalize the description of these modes?

Outline

Definition of and previous work on quasi-normal modes

- Definition of and previous work on quasi-normal modes
- Roundtrip matrix technique for calculating quasi-normal modes

- Definition of and previous work on quasi-normal modes
- Roundtrip matrix technique for calculating quasi-normal modes
- Quasi-normal modes in photonic crystal cavities side-coupled to W1 waveguide

Definition: Time-harmonic solutions $\mathbf{E}(\mathbf{r}; t) = \mathbf{E}(\mathbf{r}; \omega) \exp(-i\omega t)$ of $\nabla \times \nabla \times \mathbf{E} = \left(\frac{\omega}{c}\right)^2 \epsilon \mathbf{E}$ **Definition:** Time-harmonic solutions $\mathbf{E}(\mathbf{r}; t) = \mathbf{E}(\mathbf{r}; \omega) \exp(-i\omega t)$ of $\nabla \times \nabla \times \mathbf{E} = \left(\frac{\omega}{c}\right)^2 \epsilon \mathbf{E}$ with an outgoing wave boundary condition. **Definition:** Time-harmonic solutions $\mathbf{E}(\mathbf{r}; t) = \mathbf{E}(\mathbf{r}; \omega) \exp(-i\omega t)$ of $\nabla \times \nabla \times \mathbf{E} = \left(\frac{\omega}{c}\right)^2 \epsilon \mathbf{E}$ with an outgoing wave boundary condition.

Non-hermitian problem: $\mathbf{E}(\mathbf{r}; t) = \mathbf{E}(\mathbf{r}; \tilde{\omega}) \exp \left[-i(\omega_{\mathrm{R}} - i\gamma)t\right].$

Definition: Time-harmonic solutions $\mathbf{E}(\mathbf{r}; t) = \mathbf{E}(\mathbf{r}; \omega) \exp(-i\omega t)$ of $\nabla \times \nabla \times \mathbf{E} = \left(\frac{\omega}{c}\right)^2 \epsilon \mathbf{E}$ with an outgoing wave boundary condition.

Non-hermitian problem: $\mathbf{E}(\mathbf{r}; t) = \mathbf{E}(\mathbf{r}; \tilde{\omega}) \exp \left[-i(\omega_{\mathrm{R}} - i\gamma)t\right].$

Explicit description of time-decaying resonator mode.

[A. Settimi *et al.*, J. Opt. Soc. Am. B **26**, 876-891 (2009)]

[A. Settimi *et al.*, J. Opt. Soc. Am. B **26**, 876-891 (2009)]

[P. T. Kristensen *et al.*, Opt. Lett. 37, 1649-1651 (2012)]

[A. Settimi *et al.*, J. Opt. Soc. Am. B **26**, 876-891 (2009)]

[P. T. Kristensen *et al.*, Opt. Lett. 37, 1649-1651 (2012)]

[J. R. de Lasson *et al.*, J. Opt. Soc. Am. B **30**, 1996-2007 (2013)]

[A. Settimi *et al.*, J. Opt. Soc. Am. B **26**, 876-891 (2009)]

[P. T. Kristensen *et al.*, Opt. Lett. 37, 1649-1651 (2012)]

[J. R. de Lasson *et al.*, J. Opt. Soc. Am. B **30**, 1996-2007 (2013)]

[C. Sauvan et al., Phys. Rev. Lett. 110, 237401 (2013)]

DTU Fotonik Department of Photonics Engineering

[A. Settimi *et al.*, J. Opt. Soc. Am. B **26**, 876-891 (2009)]

[P. T. Kristensen *et al.*, Opt. Lett. 37, 1649-1651 (2012)]

[J. R. de Lasson *et al.*, J. Opt. Soc. Am. B **30**, 1996-2007 (2013)]

[C. Sauvan et al., Phys. Rev. Lett. 110, 237401 (2013)]

[Q. Bai et al., Opt. Express 21, 27371-27382 (2013)]

DTU Fotonik Department of Photonics Engineering

Section	W			
		•		

$$\mathbf{E}^{w}(\mathbf{r}) = \sum_{j} c_{j}^{w} \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z), \quad \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z+a) = \exp\left(\mathrm{i}k_{j}^{w}a\right) \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z)$$

Section W

•
•

Section w

$$\mathbf{E}^w(\mathbf{r}) = \sum_j c_j^w \mathbf{e}_j^w(\mathbf{r}_\perp, z), \quad \mathbf{e}_j^w(\mathbf{r}_\perp, z+a) = \exp\left(\mathrm{i}k_j^w a\right) \mathbf{e}_j^w(\mathbf{r}_\perp, z)$$

 x/λ_0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Section W

	:	^{3.5} O	0	0	0	0	0	0	0
	· ·	30 25 0	00	0	0	0	0	0	0
		<u> </u>							
		ွိ့္စ							
	Section w	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0
		0.5 0	õ	õ	0	0	0	0	0
		-3			-2		-1		0 x/2
	:								
	Section 2								
\mathbf{r}_{\perp}	Section 1								

z

$$\mathbf{E}^{w}(\mathbf{r}) = \sum_{j} c_{j}^{w} \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z), \quad \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z+a) = \exp\left(\mathrm{i}k_{j}^{w}a\right) \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z)$$

Section W

	Section w	
	:	
	Section 2	
°	Section 1	

	-3			-2		-1			τ/λ_0			1		2			3
0.5																	
1																	
`1.5		0				0		0				0					
5	0	0	0	0	0		0	0		0	0	0	0	0	0	0	0
2																	
2.5																	
3																	
3.0																	

z

$$\mathbf{E}^w(\mathbf{r}) = \sum_j c_j^w \mathbf{e}_j^w(\mathbf{r}_\perp, z), \quad \mathbf{e}_j^w(\mathbf{r}_\perp, z+a) = \exp\left(\mathrm{i}k_j^w a\right) \mathbf{e}_j^w(\mathbf{r}_\perp, z)$$

Section W

												_					_
3.5																	
3																	
2.5																	
2																	
5	0	0	0	0	0		0	0		0	0	0	0	0	0	0	0
1.5																	
1																	
0.5																	
0	-3			-2		-1	1		x/λ_0			1		2			3

$$\mathbf{E}^{w}(\mathbf{r}) = \sum_{j} c_{j}^{w} \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z), \quad \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z+a) = \exp\left(\mathrm{i}k_{j}^{w}a\right) \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z)$$

Section W

Quasi-normal mode condition:

Resonator roundtrip matrix $\mathbf{M}(\omega) \equiv \mathbf{R}^{\text{bot}} \mathbf{P}^{-} \mathbf{R}^{\text{top}} \mathbf{P}^{+}$ satisfying

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

00000000

0 0 0 0 0 0 0 0 00000000

0 0 0 0 0 0 0 0

00000000

000000

 x/λ_0

$$\mathbf{E}^w(\mathbf{r}) = \sum_j c_j^w \mathbf{e}_j^w(\mathbf{r}_\perp, z), \quad \mathbf{e}_j^w(\mathbf{r}_\perp, z+a) = \exp\left(\mathrm{i}k_j^w a\right) \mathbf{e}_j^w(\mathbf{r}_\perp, z)$$

Section W

Quasi-normal mode condition:

Resonator roundtrip matrix $\mathbf{M}(\omega) \equiv \mathbf{R}^{\text{bot}}\mathbf{P}^{-}\mathbf{R}^{\text{top}}\mathbf{P}^{+}$ satisfying $\mathbf{M}(\omega)\mathbf{c}^{w} = \lambda_{\mathrm{R}}\mathbf{c}^{w}, \ \lambda_{\mathrm{R}} = 1$ [J. R. de Lasson *et al.*, arXiv:1405.2595]

DTU Fotonik Department of Photonics Engineering

$$\mathbf{E}^{w}(\mathbf{r}) = \sum_{j} c_{j}^{w} \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z), \quad \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z+a) = \exp\left(\mathrm{i}k_{j}^{w}a\right) \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z)$$

Section W

Quasi-normal mode condition:

Resonator roundtrip matrix $\mathbf{M}(\omega) \equiv \mathbf{R}^{bot} \mathbf{P}^{-} \mathbf{R}^{top} \mathbf{P}^{+}$ satisfying $\mathbf{M}(\omega)\mathbf{c}^w = \lambda_{\mathrm{R}}\mathbf{c}^w, \ \lambda_{\mathrm{R}} = 1$ [J. R. de Lasson et al., arXiv:1405.2595]

DTU Fotonik Department of Photonics Engineering

www.nanophotonics.dk

.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

[J. R. de Lasson et al., arXiv:1405.2595]

[J. R. de Lasson et al., arXiv:1405.2595]

$$Q = \frac{\omega_{\rm R}}{2\gamma}$$

[J. R. de Lasson et al., arXiv:1405.2595]

$$Q = \frac{\omega_{\rm R}}{2\gamma}$$

1.1-

 $Q_{4a} = 2.0 \cdot 10^4$

[J. R. de Lasson et al., arXiv:1405.2595]

$$Q = \frac{4\pi}{2\gamma}$$
$$Q_{3a} = 1.6 \cdot 10^3$$

 $Q_{4a} = 2.0 \cdot 10^4$

(

 $(\mathcal{U}\mathbf{D}$

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⁰√/2 1.5 0000000 00000000 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -3 -1 $\begin{array}{c} 0 \\ x/\lambda_0 \end{array}$ 1 2 3

[J. R. de Lasson et al., arXiv:1405.2595]

$$Q = \frac{\omega_{\rm R}}{2\gamma}$$
$$Q_{2a} = 1.5 \cdot 10^2$$
$$Q_{3a} = 1.6 \cdot 10^3$$
$$Q_{4a} = 2.0 \cdot 10^4$$

[J. R. de Lasson et al., arXiv:1405.2595]

$$Q = \frac{\omega_{\rm R}}{2\gamma}$$
$$Q_{2a} = 1.5 \cdot 10^2$$
$$Q_{3a} = 1.6 \cdot 10^3$$
$$Q_{4a} = 2.0 \cdot 10^4$$

[J. R. de Lasson et al., arXiv:1405.2595]

DTU Fotonik Department of Photonics Engineering

$$Q = \frac{\omega_{\rm R}}{2\gamma}$$
$$Q_{2a} = 1.5 \cdot 10^2$$
$$Q_{3a} = 1.6 \cdot 10^3$$
$$Q_{4a} = 2.0 \cdot 10^4$$

[J. R. de Lasson et al., arXiv:1405.2595]

DTU Fotonik Department of Photonics Engineering

$$Q = \frac{\omega_{\rm R}}{2\gamma}$$
$$Q_{2a} = 1.5 \cdot 10^2$$
$$Q_{3a} = 1.6 \cdot 10^3$$
$$Q_{4a} = 2.0 \cdot 10^4$$

[J. R. de Lasson et al., arXiv:1405.2595]

DTU Fotonik Department of Photonics Engineering

Open nanophotonic resonators support leaky optical modes

Open nanophotonic resonators Quasi-normal modes as a support leaky optical modes rigorous framework for open resonators

Open nanophotonic resonators Quasi-normal modes as a support leaky optical modes rigorous framework for open resonators

Open nanophotonic resonators Quasi-normal modes as a support leaky optical modes rigorous framework for open resonators

$$\mathbf{E}^{w}(\mathbf{r}) = \sum_{j} c_{j}^{w} \mathbf{e}_{j}^{w}(\mathbf{r}_{\perp}, z)$$

$$\mathbf{R}^{\text{top}} \mathbf{P}^{+}$$

$$\mathbf{P}^{-} \mathbf{P}^{+}$$

$$\mathbf{R}^{\text{bot}}$$

$$Q = \frac{\omega_{\rm R}}{2\gamma}$$

Open nanophotonic resonators Quasi-normal modes as a support leaky optical modes rigorous framework for open resonators

 $Q = \frac{\omega_{\rm R}}{2\gamma}$

P. T. Kristensen

N. Gregersen

DTU Fotonik Department of Photonics Engineering