3D FMM Photonic Crystal Membrane: Band Diagram Convergence and Computation Times

Jakob Rosenkrantz de Lasson

DTU Fotonik Department of Photonics Engineering

August 13, 2014

DTU Fotonik Department of Photonics Engineering

Lecamp2007 (PRL)-Structure and Results

DTU Fotonik Department of Photonics Engineering

Investigated convergence parameters:

- Lateral Fourier truncation parameter, l_x
- Vertical Fourier truncation parameter, l_y
- Staircase approximation parameter, $N_{
 m S}$
- Sub- and superstrate heights, $h_{\rm SS}$

Non-investigated convergence parameters:

- ► Lateral computation domain size, N_{Holes}
- All PML-parameters (no PML used here)

s = 0 nm. Vary l_x , $l_y = 10$. $\overline{N_{\rm S}} = 33$. $h_{\rm SS}/h_{\rm Membrane} = 3$

DTU Fotonik Department of Photonics Engineering

s=0 nm. Vary l_x , $l_y=10$. $\overline{N_{
m S}}=33$. $h_{
m SS}/h_{
m Membrane}=1.5$

DTU Fotonik Department of Photonics Engineering

s = 0 nm. $l_x = 15$. Vary l_y . $N_{\rm S} = 33$. $h_{\rm SS}/h_{\rm Membrane} = 3$

DTU Fotonik Department of Photonics Engineering

s = 0 nm. $l_x = 10$. $l_y = 10$. Vary N_S. $h_{SS}/h_{Membrane} = 3$

DTU Fotonik Department of Photonics Engineering

s = 40 nm. Vary l_x . $l_y = 10$. $N_{\rm S} = 33$. $h_{\rm SS}/h_{\rm Membrane} = 3$

DTU Fotonik Department of Photonics Engineering

s = 40 nm. Vary l_x . $l_y = 10$. $N_{\rm S} = 33$. $h_{\rm SS}/h_{\rm Membrane} = 3$

DTU Fotonik Department of Photonics Engineering

Cluster Computation Times (s = 0 nm)

- Band diagram computed at 100 frequencies
- Computations run on XeonE5-2665 machines (64 GB RAM, Octocore)
- Computation times:

l_x	l_y	$N_{\rm S}$	Time [h]	Time Per Freq. [min]
10	10	33	12	7
15	10	33	38	23
20	10	33	90	54
10	10	65	23	14
10	10	129	74	44
15	12	33	63	38
15	14	33	110	66

Convergence in Lecamp2007a (Opt. Express)

"...Typical CPU times for the computation of R in Fig. 6(a) with (my/mx)=(15/15), (25/20) and (20/35) are approximately 30 min, 300 min and 900 min on a PhC computer equipped with a 3-GHz Intel Pentium 4 processor and with Matlab."

- Check s = 40 nm computations; why not qualitative agreement with Lecamp 2007 (PRL)-result?
- Proceed with $N_{\rm S} = 17$ and $l_y = 10$.
- Exploit spatial symmetries (see references)?
- Exploit Redheffer scattering matrix product?