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We present an eigenmode expansion technique for calculating the properties of a dipole emitter inside a micro-
pillar. We consider a solution domain of infinite extent, implying no outer boundary conditions for the electric
field, and expand the field on analytic eigenmodes. In contrast to finite-sized simulation domains, this avoids the
issue of parasitic reflections from artificial boundaries. We compute the Purcell factor in a two-dimensional
micropillar and explore two discretization techniques for the continuous radiation modes. Specifically, an equi-
distant and a nonequidistant discretization are employed, and while both converge, only the nonequidistant dis-
cretization exhibits uniform convergence. These results demonstrate that the method leads to more accurate
results than existing simulation techniques and constitutes a promising basis for further work. © 2012 Optical
Society of America
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1. INTRODUCTION
Quantum emitters embedded in optical microcavities, such as
photonic crystals and micropillars, constitute an important
platform for exploring a range of interesting physical phenom-
ena as well as realizing quantum information devices. This
includes a broad range of interesting features, including
enhanced light–matter interactions, quantum entanglement,
and single-photon emission [1]. The latter is intimately related
to the Purcell effect that describes the enhancement or inhibi-
tion of the spontaneous emission rate (SER) of an emitter
when positioned inside an optical cavity [2]. Enhancement
of the SER is vital in the development of efficient and reliable
single-photon sources in the scope of quantum information
technology [3].

To obtain the desired functionality in such devices, ac-
curate numerical modeling of the electromagnetic field is cru-
cial. Numerical methods based on spatial discretization such
as finite-difference time-domain (FDTD) [4] and the finite ele-
ment method (FEM) [5] are popular; however, the necessity of
discretizing the entire computational domain leads to huge
memory requirements for realistic device geometries. On the
other hand, modal methods such as the Fourier modal method
[6] and eigenmode expansion technique (EET) [7] are less
memory demanding, and in addition the approaches them-
selves provide a better insight into governing physical
mechanisms of interest. In this article, we formulate and de-
monstrate the application of the EET to a geometry without
outer boundary conditions, the so-called open geometry that
is commonly encountered in optics.

In modal methods, or rigorous coupled-wave analysis, the
electromagnetic fields are expanded on a complete and ortho-
normal set of basis functions. The set of basis functions can be
chosen as the set of eigenmodes supported by the optical en-
vironment under consideration, giving rise to the EET. These

eigenmodes can be determined using Fourier analysis or by
direct analytic determination of the eigenmodes. In a homo-
geneous medium, the eigenmodes are indeed plane waves,
but in more advanced structures, such as the micropillar to
be considered in this article, the complete set of eigenmodes
includes a finite number of guided modes and a continuum of
radiation modes.

A common issue for most of the suggested simulation tech-
niques is that practical implementation enforces a finite-sized
solution domain. In its simplest form, this implies the con-
straint that the field must vanish at the boundaries of the
solution domain, which inevitably produces parasitic reflec-
tions at these metal-like boundaries [8]. As a means to reduce
these effects, absorbing boundaries, the so-called perfectly
matched layers (PMLs), were introduced [9]. The use of ana-
lytic eigenmodes in combination with PML was investigated
by Bienstman and Baets [7,8], and numerically stable results
using this technique were demonstrated [10]. However, the
use of PMLs requires a set of parameters to be determined
that define the boundary region, and convergence of the elec-
tric field upon adjustment of these parameters, toward that of
an open geometry, is not guaranteed [11]. Thus, even PML
does not fully eliminate the parasitic perturbations of the
fields [12], and this inherent deficiency of finite-sized simula-
tion domains motivates the introduction of an open geometry
of infinite extent.

The open geometry has been treated by expansion of the
eigenmodes on a Fourier–Bessel basis [13]. On the other hand,
expansions on analytical eigenmodes are applied in [14],
where an open geometry with radiation from a waveguide into
free space is treated. There, an integral equation for the field
at the interface between the waveguide and free space is
derived and solved by a perturbative approach. First- and
second-order solutions are presented, but the approximate
solution procedure in practice limits the index contrasts that
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can be treated. To address this issue, an accelerated iteration
procedure has been proposed [15].

In the present work, we generalize the geometry, treat mul-
tiple layers, and pursue a different solution technique for the
second-order Fredholm integral equation. This equation takes
the form of a Lippmann–Schwinger equation, and we apply a
direct solution procedure using a discretization and a matrix
inversion [16]. This method is exact, and only the discretiza-
tion, enforced by the numerical implementation, introduces
approximations. Furthermore, the method allows arbitrary
index contrasts.

The paper is organized as follows. Section 2 presents our
model and derivations, including the geometry to be analyzed,
the modes and eigenmode expansions, the derivation of the
integral equations and the solutions of these, reflection and
transmission matrices, and the discretization of radiation
modes. Section 3 presents the results of numerical simulations
of the Purcell factor, Section 4 discusses our results and the
perspectives, and Section 5 concludes the article.

2. MODELING AND DERIVATIONS
A. Geometry
We consider a micropillar as illustrated in the left panel of
Fig. 1. The micropillar consists of a cavity and two distributed
Bragg reflectors surrounded by vacuum. A dipole emitter is
placed in the center of the cavity.

The structure is assumed uniform along y, implying a two-
dimensional (2D) problem in the xz plane. The solution do-
main extends to infinity along both the positive and negative
x axis; i.e., there are no outer boundary conditions, and con-
sequently no parasitic reflections. In the following sections,
we shall establish the formalism for calculating the field
due to the dipole emitter. The right panel in Fig. 1 shows an
example of a calculated intensity profile, clearly illustrating a
strong confinement of the field.

Throughout this paper we assume TE fields with the elec-
tric field polarized along the y axis, although treatment of TM
fields is not precluded by the method. This dictates the bound-
ary conditions, and all calculations are described in terms of
the electric field. Furthermore, uniformity along y is assumed,
which effectively reduces the solution of Maxwell’s equations
to variations in the xz plane.

While, for simplicity, we limit ourselves to a 2D geometry,
the method can be generalized to three-dimensional (3D) geo-
metries with analytical eigenmodes. We further discuss the
applicability of the method in Section 4.

B. Modeling of Purcell Factor
As will be evident later in this section, the calculation of the
Purcell factor requires an accurate simulation of the electric
field, and, as discussed in Section 1, the calculation of the field
using PML techniques is not guaranteed to converge to the
correct open geometry field. Hence, the determination of
the Purcell factor using our open geometry technique is an
excellent means to assess the formalism.

We denote the SER of an emitter in an arbitrary optical en-
vironment as γ. The effect of the environment can be quanti-
fied by the relative enhancement or inhibition of γ, known as
the Purcell factor, Fp [2]:

Fp � γ
γ0

; �1�

where γ0 is the decay rate of the emitter when located in a
homogeneous environment. The Purcell factor is closely
related to the cavity quality factor, Q, and mode volume, V ,
through [17]

Fp � Q

V

3λ3
4π2n3 ; (2)

where λ and n are the wavelength in vacuum and the refrac-
tive index of the material in the cavity, respectively. It is well
known that high values of Q are desirable to obtain viable
single-photon sources [12] and likewise that the computation
of Q is a demanding task. Having related Fp to Q above, it is
apparent that accurate modeling of Fp is needed.

Assuming a quantum emitter of ideal quantum efficiency,
Fp may equally well be determined as the enhancement or in-
hibition of the power radiated by an emitter, such that [18]

Fp � P

P0
; (3)

where P and P0 are the power radiated by the emitter in the
cavity and in a homogeneous environment, respectively. The
modeling of Fp is then reduced to the determination of P

and P0.
If we consider a dipole emitter with harmonic time de-

pendence and current density J � J0δ�r − r0�ŷ, the power
radiated by this dipole may be determined as [18]

P � −
J0

2
Re�Ey�r0��; (4)

where Ey�r0� is the y component of the electric field due to the
dipole evaluated at the position of the dipole. By using the re-
sult in Eq. (4), it is a simple matter to obtain an analytical value
for P0, independent of the refractive index in the uniform
medium.

It should be noted that the assumption of uniformity along y
implies that the dipole emitter in reality represents a quantum
wire and not a quantum dot.

The procedure for determining the electric field due to an
arbitrary current source is outlined in [8,19]. Using the EET,
the determination of the field in structures with multiple
layers is carried out using a scattering-matrix formalism

Fig. 1. (Color online) (Left) Emitter (red dot) inside a micropillar in
the open geometry, illustrated in an xz plane. Different colors repre-
sent different refractive indices. The micropillar is surrounded by
vacuum. (Right) Calculated intensity profile of the micropillar design
introduced in Section 3. Gray dashed lines outline the boundary of the
micropillar.
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[20], and in this context reflection and transmission matrices,
R and T, must be determined. This is the objective of the
following sections.

C. Modes and Eigenmode Expansion
As discussed in Subsection 2.A, we aim to determine the field
resulting from a dipole emitter inside a cavity in a micropillar;
see Fig. 1. To that end, we initially consider the reduced pro-
blem of two arbitrary and adjacent layers in the micropillar.
Two such layers are shown in Fig. 2. Notice that the cladding
regions that were not shown explicitly in the preceding figure
are now included. Although the cladding regions of the micro-
pillar in Fig. 1 are vacuum in all layers, for generality we here
allow for different cladding regions in the two layers, with
refractive indices n

f1g
cl and n

f2g
cl , respectively.

The qth waveguide layer with refractive indices nfqg
cl < n

fqg
co

in the cladding and core regions, respectively, supports a fi-
nite number, Nq, of guided modes, Ufqg

j �x�, and a continuum
of radiation modes, ψ fqg

m �x; ρ�. The radiation modes can be
viewed as waves impinging from x → �∞ (x → −∞) for m �
1 (m � 2). The modes are uniquely characterized by their
x-propagation constants, fhfqgj ; h

fqg;co
j g and fρ; ρfqgco g for guided

modes and radiation modes, respectively. Superscript and
subscript “co” on the x-propagation constants refer to the core
region of the waveguide, while no superscript/subscript impli-
citly denotes cladding regions. These, the corresponding
z-propagation constants, βfqgj and βfqg�ρ�, and formal defini-
tions of the modes are presented in Appendix A.

We assume that illumination is caused by the excitation
(1) of a guided mode, Uf1g

ĵ
�x�, or (2) of a radiation mode,

ψ f1g
m̂
�ρ̂; x�, that propagates in the positive z direction in layer

1; see Fig. 2.When illuminationby a guidedmode is considered,
the electric fields in layers 1 and 2 are termed Ef1g�x; z� and
Ef2g�x; z�, respectively, and these take the following forms:

Ef1g�x; z� � U
f1g
ĵ
�x�e−iβĵ z �

XN1

j1�1

R
f1g
j1 ;̂j

e
iβf1g

j1
z
U

f1g
j1
�x�

�
X2
m1�1

Z
∞

0
R
f1g
m1 ;̂j

�ρ1�eiβf1g�ρ1�zψ f1g
m1
�x; ρ1� dρ1; (5a)

Ef2g�x;z��
XN2

j2�1

T
f2g
j2 ;̂j

e
−iβf2g

j2
z
U

f2g
j2
�x�

�
X2
m2�1

Z
∞

0
T
f2g
m2 ;̂j

�ρ2�e−iβf2g�ρ2�zψ f2g
m2
�x;ρ2� dρ2: (5b)

We employ noncalligraphic letters for electric fields and
reflection and transmission coefficients for illumination by
a guided mode, while calligraphic letters are used when
illumination is caused by a radiation mode. Ef1g�x; z� and
Ef2g�x; z� depend implicitly on the guide mode illumination in-
dex, ĵ, but we suppress this dependence for brevity. Equa-
tions (5a) and (5b) coincide with [14] but are generalized to
the case of two waveguide layers with arbitrary numbers of
guided modes.

Illumination by a radiation mode has not previously been
described in the literature. Since radiation modes cannot
be excited individually in actual structures, but only as
continuous superpositions, the simple interpretation applic-
able to illumination by guided modes cannot be transferred
directly. However, it is conceptually identical to the well-
known study of illumination of an interface by plane waves;
see for instance [21], in which the Fourier components of
the field are considered separately. Likewise, the concept
of Fresnel refraction at an interface is an example of illumi-
nation using a plane wave. The expansions are analogous to
those for illumination by a guided mode, namely,

Ef1g�x; z� � ψ f1g
m̂
�x; ρ̂�e−iβf1g�ρ̂�z �

XN1

j1�1

Rf1g
j1 ;m̂

�ρ̂�eiβ
f1g
j1

z
U

f1g
j1
�x�

�
X2
m1�1

Z
∞

0
Rf1g

m1 ;m̂
�ρ1; ρ̂�eiβf1g�ρ1�zψ f1g

m1
�x; ρ1� dρ1;

(5c)

Ef2g�x; z� �
XN2

j2�1

T f2g
j2 ;m̂

�ρ̂�e−iβ
f2g
j2

z
U

f2g
j2
�x�

�
X2
m2�1

Z
∞

0
T f2g

m2;m̂
�ρ2; ρ̂�e−iβf2g�ρ2�zψ f2g

m2
�x; ρ2� dρ2;

(5d)

where Ef1g�x; z� and Ef2g�x; z� are the electric fields in
layers 1 and 2, respectively, caused by illumination from a
radiation mode. We again suppress the explicit dependence
of the electric fields in the two layers on the illumination
mode.

We stress that Efig�x; z� and Efig�x; z�, i � 1; 2, in Eqs. (5) do
not represent a separation of the guided and radiation modes
but refer to the total field at the interface for illumination
using either a guided or a radiation mode. The distinction
between these two illumination conditions will be justified
in the following.

The physical interpretation of the reflection and transmis-

sion coefficients is that, e.g., Rf1g
j1;m̂

�ρ̂� and T f2g
m2;m̂

�ρ2; ρ̂� dictate
the reflection and transmission of the incoming mode,

ψ f1g
m̂
�ρ̂; x�, into the j1th guided mode in layer 1 and into the

ψ f2g
m2
�x; ρ2� radiation mode in layer 2, respectively.

In Subsection 2.D, the aperture field, which is the electric
field in the interface plane at z � 0, is defined and an integral
equation for this field is presented.

D. Aperture Field
By demanding that the electric field is continuous across the
interface at z � 0, the aperture fields for illumination by a
guided mode, Φ

ĵ
�x�, and by a radiation mode, Θm̂�x; ρ̂�,

Fig. 2. (Color online) Two adjacent waveguide layers in the open
geometry, illustrated in an xz plane. The vertical arrow illustrates
the illumination from layer 1, while the dashed arrows indicate the
scattering of the field at the interface.
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may be defined as follows by using the eigenmode expansions
in Eqs. (5):

Φ
ĵ
�x�≡ Ef1g�x; 0� � Ef2g�x; 0�; (6a)

Θm̂�x; ρ̂�≡ Ef1g�x; 0� � Ef2g�x; 0�: (6b)

The reflection and transmission coefficients are functions of
the aperture field. The dependence can be derived by ap-
plication of the orthonormality relations [Eqs. (A3)] and the
continuity condition described by Eqs. (6). The resulting
expressions are given in Appendix B.

From the above comments, it is apparent that the determi-
nation of the aperture fields is central in the eigenmode expan-
sion of the electric fields. Applying the second boundary
condition, namely that the electric field is differentiable in
the aperture plane, and using the definitions of the reflection
and transmission coefficients and the orthonormality and the
completeness of the modes within one layer, Eqs. (A3)–(A4)
lead to the following second-order Fredholm integral equa-
tions in the aperture fields:

Φ
ĵ
�x� � Φ0;̂j�x� �ΛhK�

2�x�jΦĵ
i; (7a)

Θm̂�x; ρ̂� � Θ0;m̂�x; ρ̂� �ΛhK�
2�x�jΘm̂�ρ̂�i; (7b)

where the overlap integral, hgjf i, is defined in Eq. (A2), Λ is
the integral equation eigenvalue,Φ0;̂j�x� andΘ0;m̂�x; ρ̂� are the
zeroth-order aperture fields (essentially, scaled versions of
the incident modes), and K2�x�≡ K2�x0; x� is the integral
equation kernel, all defined in Eqs. (B2) in Appendix B. A pro-
cedure for the derivations of these integral equations can be
found in [22]. It is noted that the integration variable in the
above integrals is x0.

The integral equations Eqs. (7) are of the same form as the
Lippmann–Schwinger equation. Approximate perturbative so-
lutions were considered in [14] in the limit of weakly guiding
waveguides. Solutions were computed using a truncated
Liouville–Neumann series solution including up to two terms,
and the complexity and extent of these approximate expres-
sions increase rapidly as more terms are included, in practice
limiting the approach to weak guides. To describe arbitrary
index contrasts, we will pursue a different approach, where
we solve the integral equation directly by discretizing the ra-
diation modes, which in any case is required by the numerical
implementation, and invert a matrix. This approach is pre-
sented in Subsection 2.E.

E. Solution of Lippmann–Schwinger Equation
In this section, the aperture fields are expanded on the com-
plete set of eigenmodes from the illumination layer, layer 1,
and upon discretization of the radiation modes, the integral
equations are converted into linear algebraic equations in
the expansion coefficients. The solution of this system of
equations involves the inversion of a matrix K, to be intro-
duced. The procedure follows steps similar to those in [16,23].

The procedure is the same for Eqs. (7a) and (7b) and is out-
lined below for Eq. (7a). The aperture field and the zeroth-
order aperture field are expanded on the modes as follows:

Φ
ĵ
�x� �

XN1

j1�1

cj1U
f1g
j1
�x� �

X2
m1�1

Z
∞

0
cm1

�ρ�ψ f1g
m1
�x; ρ� dρ; (8a)

Φ0;̂j�x� �
XN1

j1�1

c0j1
U

f1g
j1
�x� �

X2
m1�1

Z
∞

0
c0m1

�ρ�ψ f1g
m1
�x; ρ� dρ: (8b)

For a specified guided illumination mode, Φ0;̂j�x� is known,
whereby the coefficients c0j1

and c0m1
�ρ� are also known. The

coefficients cj1 and cm1
�ρ�, specifying the aperture field, re-

main to be determined. Insertion of these expansions into
Eq. (7a) and application of the orthonormality relations from
Eqs. (A3) yield the following equations in the unknown
coefficients:

cj1 0 � c0
j1

0 �Λ
Z

∞

−∞

Z
∞

−∞

K2�x0; x�

×
�XN1

j1�1

cj1U
f1g
j1
�x0� �

X2
m1�1

Z
∞

0
cm1

�ρ�ψ f1g
m1
�x0; ρ� dρ

�

× �Uf1g
j1

0 �x��� dx0 dx; (9a)

cm1
0 �ρ0� � c0

m1
0 �ρ0� �Λ

Z
∞

−∞

Z
∞

−∞

K2�x0; x�

×
�XN1

j1�1

cj1U
f1g
j1
�x0� �

X2
m1�1

Z
∞

0
cm1

�ρ�ψ f1g
m1
�x0; ρ� dρ

�

× �ψ f1g
m1

0 �x; ρ0��� dx0 dx: (9b)

Once the radiation modes are discretized into L modes,
ρ ∈ R� → ρ ∈ fρlgLl�1, which in any case is required upon nu-
merical implementation of the formalism, Eqs. (9a) and (9b)
take the same form. The result can be summarized in the fol-
lowing compact equation:

dk0 � d0
k0 �

XN1�2L

k�1

Kk0 ;kdk; (10)

where

dk �
8<
:
ck 1 ≤ k ≤ N1

c1�ρk−N1
� N1 � 1 ≤ k ≤ N1 � L

c2�ρk−N1−L
� N1 � L� 1 ≤ k ≤ N1 � 2L

; (11a)

d0k �
8<
:
c0k 1 ≤ k ≤ N1

c01�ρk−N1
� N1 � 1 ≤ k ≤ N1 � L

c02�ρk−N1−L
� N1 � L� 1 ≤ k ≤ N1 � 2L

. (11b)

The definitions of Kk0 ;k are given in Appendix C. By defining
vectors with elements dk0 and d0

k0 and a matrix with elements
Kk0 ;k, the above equation can be formulated as a matrix equa-
tion in all of the unknown coefficients:

d � d0 �Kd; (12)

from which

d � �I −K�−1d0: (13)
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As mentioned earlier, Φ0;̂j , defined in Eq. (B2b), is merely a
scaled version of the incoming mode, and to express d expli-
citly in terms of the expansion coefficients of the incoming
mode, din, we have

d0 � ζdin; (14)

where ζ is a diagonal matrix with elements

ζkk � −2Λ

8><
>:
βf1gk 1 ≤ k ≤ N1

β1�ρk−N1
� N1 � 1 ≤ k ≤ N1 � L

β1�ρk−N1−L
� N1 � L� 1 ≤ k ≤ N1 � 2L

: (15)

With this notation Eq. (13) becomes

d � �I −K�−1ζdin: (16)

Having obtained the vector d, the reflection and transmission
matrices may finally be expressed; see Subsection 2.F.

F. Reflection and Transmission Matrices
The aperture field, described by the elements in d, can be ex-
pressed as the sum of the incoming field, din, and the reflected
field, described at this point by an unknown coefficient vector,
dr :

d � din � dr: (17)

The coefficients for the reflected field are given via

dr � Rdin; (18)

whereR is the reflection matrix. Combining Eqs. (16–18) gives
the reflection matrix in terms of K:

R � �I −K�−1ζ − I: (19)

The calculation of the corresponding transmission matrix, T,
is straightforward. Since the aperture field in Eqs. (8) is ex-
panded on modes from layer 1, a change of basis matrix is
needed to express it in layer 2. We thus define a matrixM that
changes from the basis in layer 1 to the basis in layer 2, that
is, df2g � Mdf1g, and the transmission matrix takes the
form T � M�I −K�−1ζ.

When R and T have been determined, the electric field in-
side the cavity can be determined using the scattering-matrix
formalism. Using the result in Eq. (4), this permits the deter-
mination of the radiated power and hence of the Purcell
factor.

G. Nonuniform Discretization
The evaluation of Eq. (4) requires a summation over the dis-
crete set of guided modes as well as a semi-infinite integral
over the continuum of radiation modes. The evaluation of
the semi-infinite ρ integral necessarily requires a discretiza-
tion, and represents the only approximation in the method.

A key advantage of our formalism is the freedom to choose
the discretization in ρ, as opposed to the fixed set of modes
that the artificial boundary conditions in a closed geometry
impose. An intuitively efficient discretization is obtained by
considering a uniform layer in which radiation in any direction
in the xz plane is equally likely. Thus, contributions to the total
propagation constant nk0 �

����������������
ρ2 � β2

p
from ρ and β should be

weighed equally, and only propagating modes contribute to
the emitted power, such that the semi-infinite integral is re-
duced to an integral over 0 < ρ < nk0. To ensure an equal
weighting of all directions, it is appropriate to choose an equi-
distant angular discretization:

ρ � nk0 cos�θ�; (20)

with θ given as a discrete set in the range θ ∈ �0; π∕2�. We de-
note this discretization as the θ discretization. Figure (3)
shows the equal angular spacing, and it is apparent that the
ρ spacing becomes increasingly dense as ρ approaches nk0.

Obviously, in more complicated multilayered waveguide
structures, the above considerations do not hold strictly;
for instance we expect all ρ values to contribute and certain
emission directions to be favored. However, since more com-
plicated structures can essentially be thought of as perturba-
tions of the uniform layer, we can expect to preserve many of
the core features. Consequently, we pursue a discretization
identical to that in Eq. (20) in the range 0 < ρ < nclk0. The re-
maining semi-infinite integration interval, nclk0 < ρ < ∞, is cut
off at ρcut, chosen according to convergence tests, and a re-
versed θ discretization, where the density of sampling points
decreases as ρ increases, is applied in this range.

3. NUMERICAL RESULTS
In this section, we present results for the Purcell factor in a
micropillar geometry obtained using the open geometry form-
alism developed in Section 2. Results have been computed
using an equidistant discretization of the radiation modes
as well as the θ discretization outlined in Subsection 2.G, and
K has been evaluated numerically. Comparison of the results
from the two discretization methods demonstrates the
strengths of the θ discretization and the benefits of free choice
of discretization.

We consider a GaAs/AlAs micropillar geometry similar to
the micropillar structures considered in [24], with a dipole
emitter positioned symmetrically centered in a cavity layer
of GaAs [25]. The refractive indices of the alternating layers
of GaAs and AlAs are chosen as 3.495 and 2.94, respectively,
according to a wavelength of λ � 0.95 μm. The micropillar
is placed in vacuum, such that ncl � 1 for all layers. The

Fig. 3. Illustration of the relation nk0 �
����������������
ρ2 � β2

p
in the �ρ; β� plane,

where the quarter circle represents the propagation constant nk0.
Solid lines indicate the equidistant angular spacing used in the θ
discretization.
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structure is illustrated in Fig. 1. The diameter of the micropil-
lar is D � 2 μm. The total number of GaAs/AlAs distributed
Bragg reflector (DBR) layer pairs are chosen as 25 and 20
for the bottom and top DBR mirrors, respectively. The thick-
ness of each layer is determined according to the design in
[24], requiring a quarter-wave optical thickness, hi �
λ∕�4�ni� for the ith DBR layer, with �ni � βfig1 ∕k0 being the ef-
fective refractive index of the fundamental mode of the ith
layer. Similarly, the cavity thickness is chosen to equal an
entire wavelength of the fundamental mode; that is,
hcav � λ∕�nGaAs.

In each simulation, a cut-off value, ρcut, has been chosen
based on convergence checks. If the distance from the dipole
to the scattering surface, or from one scattering surface to an-
other, is short, evanescent modes are more likely to scatter to
propagating modes (and thus contribute to the emitted
power), and we therefore expect that ρcut should increase
as the thinnest layer thickness min�hcav; hi� is decreased. In
accordance with this and convergence checks, the cut-off
value has been chosen as ρcut � 3.5nclk0.

Results are computed as a function of the total number of
included modes, i.e., the sum of the number of guided modes
and the number of discretized radiation modes included in the
simulation.

Results for the Purcell factor of the micropillar, computed
by use of the matrix inversion procedure, are shown in Fig. 4.
Convergence is observed for both discretization methods.
However, there is a distinct difference in the pattern of con-
vergence. The θ-discretization results display an initial transi-
ent oscillation but exhibits a uniform convergence after
roughly 100 included modes. The equidistant discretization
has the same initial transient behavior but continues to exhibit
oscillations.

The origin of these oscillations can be explained by an
analogy with the closed geometry. Upon discretization of the
radiation modes with the equidistant method, the set of
sampled propagation constants fρigi constitutes a set of num-
bers with a common divisor, Δρ. Consequently, the set of
eigenmodes, in this case of the form fexp��iρix�gi, shares
a common period Lrep � 2π∕Δρ. As a result, the far field cal-
culated via the equidistant method will exhibit a period of re-
petition. In essence, the equidistant open geometry then
emulates a periodic boundary domain. Accordingly, many
of the same weaknesses are shared between the two other-

wise distinct approaches—here exemplified by a strong and
persistent oscillatory behavior of the Fp simulations. Contrary
to this, the far field calculated via the θ discretization exhibits
no overall periodicity, since the set fexp��iρix�gi shares no
common period. Furthermore, we obtain no persistent oscil-
lation in Fp versus the number of included modes.

The field intensity profile of the micropillar is depicted in
the right panel of Fig. 1, computed using the θ-discretization
method.

Simulations with 1000 included modes yield a Purcell fac-
tor, Fp, of 147.13 and 147.16 for equidistant and θ sampling,
respectively. With the θ discretization (and possibly also with
the equidistant sampling), our open geometry formalism pre-
sents a tool that, in principle, is capable of computing the Pur-
cell factor to an arbitrary precision. A relative difference of
approximately 1% is obtained with 40 included modes, demon-
strating a high degree of accuracy and convergence even with
few included modes.

In this work, we have performed 2D calculations, and we
now compare our characteristic parameters with those ob-
tained using full 3D simulations. First, using Eqs. (1) and (2)
in [12], we compute the Q factor for the cavity and find
Q � 34500. Using Fp � 147.16 and solving Eq. (2) for the
mode volume, V , we then determine a numerical value for
the mode volume that the micropillar would have in the
corresponding 3D geometry:

V � Q

Fp

3λ3
4π2n3 � 0.36 μm3: (21)

This number is in good agreement with the mode volume
computed using a full 3D model [26].

4. DISCUSSION
The formalism established in this paper holds both physical
and computational advantages as compared to other estab-
lished simulation techniques such as FDTD and FEM. First,
the electric fields are expanded on analytical eigenmodes,
which ensures more accurate and physically intuitive fields.
Also, the search for roots of a transcendental equation is only
necessary for the guided modes. The cumbersome search rou-
tines [8] necessary to determine propagation constants of ra-
diation modes in PML formulations are avoided. Furthermore,
it is a major advantage of the proposed method that it is
formulated for an open geometry, which is the natural setting
for optical cavities given the propagation characteristics of
photons.

The largest drawback of the method in our current imple-
mentation is the need to evaluate the semi-infinite and ill-
behaved ρ integrals occurring in Eqs. (C2–C3) numerically.
This represents, by far, the bulk of the computation of the
K matrix and by extension the bulk of any open geometry
matrix inversion computation. Any analytical or approximate
solution of these integrals would potentially elevate the meth-
od from a rapidly converging and accurate scheme to a com-
putationally efficient scheme as well. A different approach for
reducing the computational requirements exists via assess-
ment of the error of the field computation via insertion of the
computed field into Eqs. (6). Accurate assessment of the error
could potentially allow for down-adjustment, e.g., of the
required accuracy in the numerical evaluation of ρ integrals.

Fig. 4. (Color online) Simulation results for the Purcell factor. Re-
sults are presented as a function of the number of included modes
for both discretization methods.
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We stress that our formalism applies to any geometry
with analytical eigenmodes. 2D results have been presented
for simplicity, but the method can readily be extended to 3D
structures for which analytical eigenmodes are available.
This is the case for 3D structures with rotational symmetry
that essentially reduce to 2D problems due to angular mo-
mentum decoupling, and for this reason we expect no per-
formance penalty for these structures. Likewise, for 3D
structures with elliptical cross section analytical eigenmodes
exist [27], and our method thus applies to this geometry
as well.

5. CONCLUSION
Wehave introduced a formalism to compute the electric field in
arbitrary step-index profiles using an open geometry. In the
open geometry, the eigenmodes are constitutedbya finite num-
ber of guided modes and a continuum of radiation modes, and
the electric field is expanded on these analytical modes, ensur-
ing high accuracy. The electric field in multilayered structures
is computed using the standard S-matrix formalism by employ-
ing reflection and transmission matrices. Determination of
these matrices involves the solution of a Lippmann–Schwinger
equation. The solution procedure requires a discretization of
the radiation modes. A central advantage of our formalism,
as compared to formalisms with closed or periodic boundary
conditions, is the freedom to choose this discretization. As an
example of the possibilities of the formalism, we model and
calculate the Purcell factor, Fp, due to a quantum wire em-
bedded in a GaAs/AlAs micropillar. We calculate Fp as a func-
tion of the number of included modes using two different
discretization techniques. When employing the θ discretiza-
tion, the results display uniform convergence, while an
oscillatory convergence is observed when applying an equidi-
stant discretization. These results pave the way for accurate
modeling of open geometries in 2D and 3D structures where
analytical eigenmodes are available.

APPENDIX A: EIGENMODES
1. Definitions of Modes
The modes in the qth waveguide layer, presented in
Subsection 2.C, take the following forms:

U
fqg
j �x� � 1���������

N
fqg
j

q

8>>>>>><
>>>>>>:

a
fqg;cl
j exp

�
−ih

fqg
j

�
x� D

2

��
; −∞ < x ≤ −

D
2 ;

a
fqg;co
j exp

�
−ih

fqg;co
j

�
x −

D
2

��
� b

fqg;co
j exp

�
ih

fqg;co
j

�
x� D

2

��
; −

D
2 ≤ x ≤

D
2 ;

b
fqg;cl
j exp

�
ih

fqg
j

�
x −

D
2

��
; D

2 ≤ x < ∞;

(A1a)

ψ fqg
m �x; ρ� � 1�����������������

N fqg
m �ρ�

q
8><
>:
a
fqg;1
m �ρ� exp�−iρx� � b

fqg;1
m �ρ� exp�iρx�; −∞ < x ≤ −

D
2 ;

a
fqg;2
m �ρ� exp�−iρfqgco x� � b

fqg;2
m �ρ� exp�iρfqgco x�; −

D
2 ≤ x ≤

D
2 ;

a
fqg;3
m �ρ� exp�−iρx� � b

fqg;3
m �ρ� exp�iρx�; D

2 ≤ x < ∞;

(A1b)

where N
fqg
j and N fqg

m �ρ� are real normalization constants,

�hfqg;cl∕coj �2 � �nfqg
cl∕cok0�2 − �βfqgj �2 are the x-propagation con-

stants of the jth guided mode in the cladding and core regions,

respectively, and 0 < ρ < ∞ and �ρfqgco �2 � k20��nfqg
co �2 −

�nfqg
cl �2� � ρ2 are the x-propagation constants of a radiation

mode in the cladding and core regions, respectively. The z-
propagation constants of the guided and radiation modes

are βfqgj ∈ R� and βfqg�ρ�2 � �nfqg
cl k0�2 − ρ2, respectively. The

former is determined numerically from the x-boundary condi-
tions of the guided modes, while the latter may be either po-

sitive real (0 < βfqg�ρ� < n
fqg
cl k0) or negative imaginary, which

corresponds to propagating or exponentially decaying radi-
ation modes, respectively. Finally, the radiation modes
may be interpreted as illumination from the left [m �
1∶afqg;11 �ρ� ≠ 0; bfqg;31 �ρ� � 0] or from the right [m � 2∶afqg;12

�ρ� � 0; bfqg;32 �ρ� ≠ 0]. The orthonormality and completeness
of the modes within one layer, used in Subsection 2.D, are
presented in Appendix B.

2. Mode Orthogonality and Completeness
Inner products, used to express overlap integrals, are denoted
by the usual bracket notation:

hgjf i � �hf jgi�� ≡
Z

∞

−∞

f �x�g��x� dx: (A2)

With this notation, the orthonormality of the modes intro-
duced in Subsection 2.C can be expressed as [14]

hUfqg
k jUfqg

j i � δjk; (A3a)

hψ fqg
m �ρ�jUfqg

j i � 0; (A3b)

hψ fqg
m0 �ρ0�jψ fqg

m �ρ�i � δmm0δ�ρ − ρ0�; (A3c)

while the completeness of the set of modes becomes
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δ�x − x0� �
XNq

j�1

Uj�x��Ufqg
j �x0���

�
X2
m�1

Z
∞

0
ψ fqg
m �x; ρ��ψ fqg

m �x0; ρ��� dρ: (A4)

APPENDIX B: APERTURE FIELD INTEGRAL
EQUATION
1. Reflection and Transmission Coefficients
By requiring continuity of the aperture fields in Eqs. (6) and
applying the orthonormality of the modes, the following defi-
nitions of the reflection and transmission coefficients are
obtained:

R
f1g
j1 ;̂j

� hUf1g
j1
jΦi − δ

j1 ĵ
; (B1a)

Rf1g
j1;m̂

�ρ̂� � hUf1g
j1
jΘm̂�ρ̂�i; (B1b)

R
f1g
m1 ;̂j

�ρ1� � hψ f1g
m1
�ρ1�jΦi; (B1c)

Rf1g
m1 ;m̂

�ρ1; ρ̂� � hψ f1g
m1
�x; ρ1�jΘm̂�ρ̂�i − δm1m̂

δ�ρ1 − ρ̂�; (B1d)

T
f2g
j2 ;̂j

� hUf2g
j2
jΦi; (B1e)

T f2g
j2 ;m̂

�ρ̂� � hUf2g
j2
jΘm̂�ρ̂�i; (B1f)

T
f2g
m2 ;̂j

�ρ2� � hψ f2g
m2
�ρ2�jΦi; (B1g)

Rf1g
j1;m̂

�ρ̂� � hψ f2g
m2
�ρ2�jΘm̂�ρ̂�i: (B1h)

2. Definitions for Second-Order Fredholm Equation
Definitions required in the integral equations for the aperture
fields [Eqs. (7)] are given below:

Λ � −
1

k0�nf1g
cl � n

f2g
cl �

; (B2a)

Φ0;̂j�x� �
2βf1g

ĵ

k0�nf1g
cl � n

f2g
cl �

U
f1g
ĵ
�x�; (B2b)

Θ0;m̂�x; ρ̂� �
2β1�ρ̂�

k0�nf1g
cl � n

f2g
cl �

ψ f1g
m̂
�x; ρ̂�; (B2c)

K2�x0; x� �
XN1

j1�1

�βf1gj1
− k0n

f1g
cl �Uf1g

j1
�x��Uf1g

j1
�x0���

�
X2
m1�1

Z
∞

0
�β1�ρ1� − k0n

f1g
cl �ψ f1g

m1
�x; ρ1�

× �ψ f1g
m1
�x0; ρ1��� dρ1

�
XN2

j2�1

�βf2gj2
− k0n

f2g
cl �Uf2g

j2
�x��Uf2g

j2
�x0���

�
X2
m2�1

Z
∞

0
�β2�ρ2� − k0n

f2g
cl �ψ f2g

m2
�x; ρ2�

× �ψ f2g
m2
�x0; ρ2��� dρ2: (B2d)

APPENDIX C: MATRIX INVERSION
1. Elements of K
The matrix K was introduced in Subsection 2.E. It can be de-
composed into four block matrices:

K �
�
KGG KRG

KGR KRR

�
; (C1a)

where the indices of the elements of the constituent block
matrices vary according to

2
6666664

KGG
k0;k; KRG

k0 ;k;

1 ≤ k0 ≤ N1; 1 ≤ k0 ≤ N1;

1 ≤ k ≤ N1; N1 � 1 ≤ k ≤ N1 � 2L;
KGR

k0;k; KRR
k0 ;k;

N1 � 1 ≤ k0 ≤ N1 � 2L; N1 � 1 ≤ k0 ≤ N1 � 2L;
1 ≤ k ≤ N1; N1 � 1 ≤ k ≤ N1 � 2L;

3
7777775
. (C1b)

The superscript notation is to be interpreted as follows. The
first index indicates excitation mode type, and the second in-
dex indicates a contribution to the aperture field. For instance,
KGR governs contributions to the aperture field from the radia-
tion modes, due to excitation by a guided mode. The elements
of each of the block matrices are expressed below:

KGG
k0 ;k � Λ

�
�βf1gk − k0n

f1g
cl �δkk0 �

XN2

j2�1

�βf2gj2
− k0n

f2g
cl �

× hUf2g
j2
jUf1g

k ihUf1g
k0 jUf2g

j2
i

�
X2
m2�1

Z
∞

0
�β2�ρ2� − k0n

f2g
cl �hψ f2g

m2
�ρ2�jU f1g

k i

× hUf1g
k0 jψ f2g

m2
�ρ2�i dρ2

�
; (C2a)

KRG
k0 ;~k

� ΛΔρk−N1−Lk

�XN2

j2�1

�βf2gj2
− k0n

f2g
cl �

× hUf2g
j2
jψ f1g

ηk �ρk−N1−Lk
�ihUf1g

k0 jUf2g
j2
i

�
X2
m2�1

Z
∞

0
�β2�ρ2� − k0n

f2g
cl �hψ f2g

m2
�ρ2�jψ f1g

ηk �ρk−N1−Lk
�i

× hUf1g
k0 jψ f2g

m2
�ρ2�i dρ2

�
; (C2b)
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KGR
~k0;k

� Λ
�XN2

j2�1

�βf2gj2
− k0n

f2g
cl �hU f2g

j2
jUf1g

k ihψ f1g
ηk0 �ρk0−N1−Lk0 �jU

f2g
j2
i

�
X2
m2�1

Z
∞

0
�β2�ρ2� − k0n

f2g
cl �hψ f1g

ηk0 �ρk0−N1−Lk0 �jψ
f2g
m2
�ρ2�i

× hψ f2g
m2
�ρ2�jUf1g

k i dρ2
�
; (C2c)

KRR
~k0;~k

� Λ
�
KND

ηk0 ;ηk�ρk0−N1−Lk0 ;ρk−N1−Lk
�Δρk−N1−Lk

� KD
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; (C2d)

with

KND
m1

0 ;m1
�ρ0;ρ��

XN2

j2�1

�βf2gj2
−k0n

f2g
cl �hψ f1g

m1
0 �ρ0�jUf2g

j2
ihUf2g

j2
jψ f1g
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�ρ�i

�
X2
m2�1

�Z
∞

0
�β2�ρ2�−k0nf2g
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×Hf2;1g
m2 ;m1

�ρ2;ρ�Hf1;2g
m1

0;m2
�ρ0;ρ2� dρ2

��β2�ρ�−k0nf2g
cl �Gf2;1g

m2;m1
�ρ�Hf1;2g

m1
0;m2

�ρ0;ρ�

��β2�ρ0�−k0nf2g
cl �Hf2;1g

m2;m1
�ρ0;ρ�Gf1;2g

m1
0 ;m2

�ρ0�
�
; (C3a)

KD
m1

0 ;m1
�ρ0� � δm1

0;m1
�β1�ρ0� − k0n

f1g
cl �

�
X2
m2�1

G
f2;1g
m2 ;m1

�ρ0�Gf1;2g
m1

0;m2
�ρ0��β2�ρ0� − k0n

f2g
cl �:

(C3b)

To express the above elements, the following definitions have
been applied:

ηk �
�
1 N1 < k ≤ N1 � L

2 N1 � L < k ≤ N1 � 2L
; �C4a�

Lk �
�
0 N1 < k ≤ N1 � L

L N1 � L < k ≤ N1 � 2L
; (C4b)

~k � k − N1 − Lk; (C4c)

hψ fqg
m �ρ�jψ fq0g

m0 �ρ0�i � δ�ρ − ρ0�Gfq;q0g
m;m0 �ρ� �H

fq;q0g
m;m0 �ρ; ρ0�: (C4d)
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