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Multiple-scattering formalism beyond the quasistatic
approximation: Analyzing resonances in plasmonic chains

Jakob Rosenkrantz de Lasson, Philip Trøst Kristensen and Jesper Mørk

DTU Fotonik, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Abstract. We present a multiple-scattering formalism for simulating scattering of electromagnetic waves on spherical
inhomogeneities in 3D. The formalism is based on the Lippmann-Schwinger equation and the electromagnetic Green’s
tensor and applies an expansion of the electric field on spherical wavefunctions. As an example, we analyze localized surface
plasmons in chains of Ag spheres, and show how the resonances of such systems depend sensitively on the polarization of the
incoming field, the spacing between the particles and the number of particles in the chain.

Keywords: Electromagnetic Green’s tensor, scattering, plasmonic nanoparticles, localized surface plasmons
PACS: 02.70.-c, 41.20.-q, 42.25.Fx, 78.20.Bh

INTRODUCTION

Plasmonics has received significant attention in re-
cent years, and diverse applications, including metallic
nanoantennas [1], waveguiding beyond the diffraction
limit [2] and plasmonic solar cells [3], have been pro-
posed. The possibilities for tailoring the spectra of such
systems are intriguing, and at resonance localized sur-
face plasmons (LSPs) give rise to strong field enhance-
ments in the vicinity of the metal particles (see Fig. 1).
Consequently, accurate modeling of the electromagnetic
field is important, and in particular when particles are
closely spaced, modeling of the field beyond the qua-
sistatic approximation is needed [4]. In this context, we
present a scattering formalism for modeling optical mi-
crostructures and nanosize plasmonic systems, including
calculations of the Green’s tensor, the Local Density of
States (LDOS), Purcell factors and cavity modes [5].

We consider N spherical and non-magnetic scatter-
ers, with permittivities ε j, embedded in a background
medium with permittivity εB. The structure is illumi-
nated by the field EB, and assuming harmonic time-
dependence, E(r; t) = E(r;ω)exp(−iωt), the resulting
field is the sum of the incoming field and the scattered
field [6]

E(r) = EB(r)+
∫

V
GB(r,r′)k2

0Δε(r′)E(r′)dr′, (1)

with E(r) ≡ E(r;ω), k0 ≡ ω/c and Δε(r) ≡ ε(r)− εB.
V is the volume of the the scatterers, where Δε(r) �= 0,
and GB(r,r′) is the electromagnetic Green’s tensor of the
background medium. Eq. (1) is the so-called Lippmann-
Schwinger equation which is an implicit equation for the
electric field for r∈V ; Once it is known in these regions,
it is explicit for r /∈V .
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FIGURE 1. Localized surface plasmons around N = 5 Ag
spheres of radius R = 10 nm and spaced a distance d = R.
Illustrated in z = 0-plane. Top panel: y-polarization. Bottom
panel: x-polarization.

The use of the electromagnetic Green’s tensor is con-
venient since the scattered field by construction satisfies
the outgoing wave boundary condition in the far-field

Escat(r)∼ f(θ ,φ)
exp(ikBr)

r
, kBr→ ∞, (2)

where f(θ ,φ) is the far-field radiation pattern, that is
computed analytically in the present formulation.

MULTIPLE-SCATTERING FORMALISM

For solving Eq. (1) we use the general technique of
Ref. [7], which we have generalized for 3D problems.
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We expand the field and the background field inside
the jth scatterer, centered at r0

j , as follows

E(r) = ∑
α

∑
ν

a
j
ν ,α ψ j

ν(r j)eα , (3)

EB(r) = ∑
α

∑
ν

a
j,B
ν ,α ψ j,B

ν (r j)eα , (4)

with

ψ j
ν(r j) = Kj(r j) jl(k jr j)Y

m
l (θ j,φ j), (5)

ψ j,B
ν (r j) = ψ j

ν(r j)(k j → kB) , (6)

where r j ≡ r− r0
j and k j ≡ k0

√ε j. The functions jl(x)

and Y m
l (θ ,φ) are the spherical Bessel function of order

l and the spherical harmonic of degree l and order m,
respectively. Kj(r j) contains the normalization of the
basis functions and vanishes outside scatterer j, ensuring
orthogonality of basis functions of different scatterers.
ν = {l,m} is a composite index and α ∈ {x,y,z} is
a Cartesian component. Finally, a

j
ν ,α are the unknown

expansion coefficients, and a
j,B
ν ,α are known expansion

coefficients of the background field.
Inserting these expansions into Eq. (1), projecting the

equation onto ψ j′
ν ′(r j′)eα ′ and summing over all free in-

dices yields a matrix equation for the expansion coeffi-
cients

a = MaB + k2
0GΔεa, (7)

where a (aB) is a vector containing all a
j
ν ,α (a j,B

ν ,α ). M is
a diagonal matrix, while G is a non-diagonal matrix. All
parts of the formalism are expressed analytically, which
prompts high speed in calculations, and rearranging the
central Eq. (1) yields an explicit error estimate [7]. This
and the direct possibilities for extending to multi-layered
geometries [6, 7] makes the formalism viable for model-
ing, e.g., plasmonic thin-film solar cells.

Scattering objects are commonly characterized by the
extinction cross section, Cext, that may be elegantly com-
puted using the Optical theorem [8]

Cext =
4π
kB

Im(f(θin,φin) · e∗in) , (8)

where θin and φin are the spherical angles of the in-
coming field’s wave vector, and f(θ ,φ) is given by
Eq. (2). ein is the unit polarization vector for the incom-
ing field. It is customary to normalize Cext to the ge-
ometrical cross section, giving the extinction efficiency
Qext ≡Cext/(NπR2).

EXAMPLE 1: TWO PARTICLES

We consider two Ag particles (y-direction), of radius R=
10 nm and spaced a distance d. They are embedded in
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FIGURE 2. Dimer of two Ag spheres, of radius R = 10 nm,
and spaced the distance d. Extinction efficiency for y- and x-
polarization for three values of d/R.

SiO2 (εB = 2.25), and the permittivity of the Ag spheres
is given by the Drude model (ε(ω) = 1−ω2

p/(ω2+ iγω)
with ωp = 7.9 eV and γ = 0.06 eV [9]). We illumi-
nate these by plane waves with an incoming k-vector
perpendicular (z-direction) to the dimer axis, and polar-
ized along the dimer axis (y-pol.) or perpendicular to the
dimer axis (x-pol.).

The extinction spectra are shown for three values of
d/R, for the two polarizations, in Fig. 2. The dominant
peaks are the dipole resonances, and we observe a red-
shift and a blueshift for y- and x-polarizations, respec-
tively. To study this more systematically, we plot the res-
onance wavelengths, λ Res

0 , as function of d/R for the two
polarizations in the top panel of Fig. 3. The redshift stems
from the induced charges of opposite signs on the spheres
in the gap; It acts as a dipole whose potential energy de-
creases for decreasing d/R [10].

To quantify the dependence of the resonance wave-
length under y-polarization, we define the peak shift ra-
tio [10]

Δλ Res
0 ≡ λ Res

0 −λ single
0

λ single
0

, (9)

where λ single
0 is the resonance wavelength of the iso-

lated Ag sphere. The authors in [10] suggest an expo-
nential increase of Δλ Res

0 for decreasing d/R, Δλ Res
0 ∼

exp(−(d/R)/ηd), ηd being a characteristic interaction
length, while a softer dependence on d/R is found
in [11], Δλ Res

0 ∼ 1/(d/R). The latter is explained by the
van der Waals force between the spheres that scales in-
versely with the gap distance.

In the bottom panel of Fig. 3, we show Δλ Res
0 as

function of (d/R)−1/2, and the agreement with the linear
fit is acceptable. Similar analyses with two spheres of

159

Downloaded 22 Oct 2012 to 192.38.90.11. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



10
−1

10
0

10
10.35

0.4

0.45

0.5

0.55

Gap, d/R

λ
R
e
s

0
[μ
m
]

 

 

y-pol. x-pol.

0.5 1 1.5 2 2.5 3

0

0.2

0.4

Inverse Square Root of Gap, (d/R)−1/2

Δ
λ
R
e
s

0

 

 

Linear Fit

FIGURE 3. Dimer of two Ag spheres, of radius R = 10 nm,
and spaced the distance d. Top panel: Resonance wavelengths
in extinction spectra as function of d/R. Bottom panel: Peak
shift ratio as function of (d/R)−1/2.

radius R = 25 nm (not included here) indicate a similar
dependence, suggesting a slower increase of the peak
shift ratio than reported earlier.

EXAMPLE 2: N PARTICLES

We consider a chain of N Ag spheres, of radius R = 10
nm and spaced the distance d = R. We vary N and expose
them to the y- and x-polarized plane waves described in
the previous section. This gives a spectrum for each value
of N and for each polarization, and the top panel in Fig. 4
shows the resonance wavelengths as function N.

We observe a clear redshift and a slight blueshift in
the y- and x-polarized cases, respectively. For N = 5,
Fig. 1 shows shows the LSPs in the z= 0-plane in the two
cases. The induced charges of opposite signs in the gaps
in the former case (top panel) give rise to strong field
enhancements between the spheres, yielding a redshift as
more particles are added. In contrast, for x-polarization
(bottom panel) the field is essentially located on the
individual particles, with no interaction across the gaps.

In the y-polarized case, an exponential-like con-
vergence to an asymptotic resonance wavelength is
observed for increasing N, suggesting that Δλ Res

0 ∼
exp(−ηN/(N−1)). The bottom panel of Fig. 4 shows
ln
(
Δλ Res

0
)

as function of the inverse number of periods
in the chain, 1/(N − 1). The agreement with the linear
fit is not excellent, but acceptable, giving ηN = 1.9. This
suggests an interaction length of approximately two pe-
riods in the chain, i.e., each particle interacts with its
two nearest neighbors. A similar conclusion is reached
in [11].

0 5 10 15 20
0.36

0.38

0.4

0.42

0.44

Number of Scatterers, N

λ
R
e
s

0
[μ
m
]

 

 

y-pol.
x-pol.

0.1 0.2 0.3 0.4 0.5
−3

−2.5

−2

−1.5

Inverse Number of Chain Periods, 1/(N − 1)

ln
( Δ

λ
R
e
s

0

)

 

 

Linear Fit

FIGURE 4. Chain of N Ag spheres, of radius R= 10 nm, and
spaced the distance d = R. Top panel: Resonance wavelengths
as function of N. Bottom panel: Logarithm of peak shift ratio
as function of inverse number of chain periods, 1/(N−1).

In conclusion, we have outlined a scheme based on
the Lippmann-Schwinger equation and the electromag-
netic Green’s tensor for simulating, in 3D, scattering of
electromagnetic waves on N spheres. The method can be
used for calculations of the Green’s tensor and the LDOS
as well as Purcell factors and cavity modes in optical
microstructures (including photonic crystals) and plas-
monic nanostructures. We presented two example calcu-
lations of the latter, where the resonance wavelengths for
chains of Ag nanoparticles were analyzed. We found a
strong dependence on the polarization of the incoming
field, and a finite interaction length along the chain.
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