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Abstract

The field of quantum information technology is receiving significant attention these years,
and research concerning the development of single-photon sources plays a central role
in this field. These sources may be produced using optical microcavities containing e.g.
quantum dots, and knowledge and understanding of these microcavities are hence essential.
In that context, accurate and reliable theoretical models for the optical microcavities are
requested.

This thesis presents and analyzes two approaches for simulating the electric field in
a slab structure, considering only TE-waves. The two methods are used to compute
the electric field in different optical environments as well as the normalized spontaneous
emission rate. The first and simplest approach is that of a closed geometry where the
electric field is assumed to vanish outside a solution domain of finite dimensions. The
second and mathematically more challenging approach is an open geometry where the
solution domain is given infinite dimensions. For both approaches, the Helmholtz equation
for the electric field is solved using a semianalytical approach, and the resulting orthogonal
eigenmodes are used to express the electric field throughout the solution domains, using
the eigenmode expansion technique. The theoretical results are investigated numerically
in matlab.

For the closed geometry approach, the electric field is expanded on the eigenmodes
using the scattering matrix formalism, and the resulting field profiles are demonstrated
to suffer from parasitic reflections. The appertaining calculations of the normalized
spontaneous emission rate are shown to be critically dependent on the size of the solution
domain, and thus cannot be determined accurately using the closed geometry approach.

An open geometry formalism is established for a uniform layer and a waveguide layer.
Through this, the normalized spontaneous emission rate is computed in a single-layer
geometry, and contrary to the closed geometry an accurate value is obtained. Further, the
formalism is expanded to consider a two-layered open geometry, specifically by considering
illumination of the structure with a guided or a radiation mode. In the case of illumination
by a guided mode, the field profile is produced and does not suffer from parasitic reflections.
For illumination by a radiation mode, the reflection and transmission coefficients do not
converge, an no field profile is produced. Finally, an outline for the calculation of the
normalized spontaneous emission rate in open geometries of multiple layers is presented.
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Chapter 1
Introduction

The research area of optical microcavities is currently receiving significant interest [Vahala],
and optical microcavities already diffuse into current applied technology, e.g. in CD, DVD
and Blu-ray players. One of the most exciting new prospects introduced by microcavities
is the possibility of producing viable and effective single-photon sources. Development
of such sources is a prerequisite for practical implementation of quantum information
technology [Claudon] and presents a major challenge in integrated optics. In this context,
the Purcell effect [Purcell] that describes the decrease or enhancement of the spontaneous
emission rate of a quantum emitter [Vahala] is of great importance. Specifically, the Purcell
enhancement factor, termed the normalized spontaneous emission rate throughout this
report, is of significant interest in the study of micropillar cavities whose basic structure
is illustrated in Fig. 1.1(a). A scanning electron microscope image of a micropillar is
shown in Fig. 1.1(b).
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(a) Three dimensional sketch of a micropillar. A quantum
dot is embedded in the cavity region and is indicated as a
blue sphere. The two distributed bragg reflectors (DBRs)
confine the field emitted from the quantum dot to the cavity
region. The upper and lower DBRs are adjusted such that
light emission is directed primarily along the positive z-
direction. Layers of different refractive indices are assigned
different colors (red and green).

1µm

(b) Scanning electron microscope im-
age of a micropillar of diameter 1µm
[Reithmaier].

Figure 1.1 Micropillar design of a microcavity.
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2 CHAPTER 1. INTRODUCTION

The normalized spontaneous emission rate can conveniently be determined by compu-
tation of the normalized power emitted from a current source [Novotny]. This project is
concerned with obtaining the normalized spontaneous emission rate by application of this
correlation. The power emitted from such a dipole current source depends critically on the
electric field due to the dipole and on the surrounding optical environment. By developing
accurate modeling tools for determination of the electric field in optical geometries, this
allows for determination of the normalized spontaneous emission rate. The specific aim of
this thesis is to analyze and compare two different modeling approaches, presented shortly,
that allow determination of the optical fields and the normalized spontaneous emission rate.

Different types of electromagnetic waves may exist in the structures to be studied,
namely transverse electric and transverse magnetic, and in this thesis only the transverse
electric waves are treated. The geometry studied in this project is a that of a slab structure
as it represents a mathematically manageable problem and therefore provides a good basis
for the development of modeling tools. Specifically, slab structures allow simplification
of the otherwise three-dimensional problem to a simpler two-dimensional problem. The
reduction to a two-dimensional problem is attained by assuming that the structure is
uniform and large of extent along the y-axis, and an example of such a slab structure is
depicted in Fig. 1.2. Because the material is assumed uniform along y, the y-eigenmodes
of the electric field become orthogonal, and consequently an arbitrary y-eigenmode will
not couple to other y-eigenmodes. Hence, the characterization of the electric field in
a slab structure can be satisfactorily performed by studying the eigenmodes along the
x- and z-directions. Furthermore, the assumption of a large extent in the y-direction
induces that the y-propagation constants are negligible, meaning that only the x- and
z-propagation constants need be taken into consideration.

From the above discussion, the study of slab structures is essentially a two dimensional
problem and hence does not represent most actual physical devices currently under
experimental investigation. However, measurements of the spontaneous emission rate
in one dimensional Bragg gratings illustrate that slab structures can be used to obtain
significant enhancement of the spontaneous emission rate [Tocci]. Furthermore, the slab
approach is justified by its usefulness as a frame of reference for a proof of concept: If
successful results are obtained for modeling of slab structures, inclusion of more realistic
structures, such as cylindrically symmetrical structures, is merely a matter of applying
the same principles to a mathematically more extensive problem.

To evaluate the electric field in a given structure, different and well-established model-
ing techniques exist, including the finite-difference time-domain method, the finite element
method and the Green’s function method. In this thesis, the electric field is determined
using the eigenmode expansion technique in which the eigenmodes along x and z are
determined to obtain a basis upon which the full field can be expanded. Specifically, a
semi-analytical approach where the eigenmodes are expressed in their analytical form is
used. The only approximation in obtaining eigenmodes by use of this approach involves
the determination of propagation constants by use of a numerical root finding algorithm
and the evaluation of field coefficients by numerical computation of the kernel of a matrix.
The use of these semi-analytical eigenmodes prompts a memory-efficient and highly
accurate method [Gregersen3, Chapter 3].

Two different approaches, namely that of a closed geometry and that of an open
geometry, will be pursued. Calculations in closed geometries are well-studied and their
inclusion in this project serves to introduce many of the principles necessary to develop a
formalism in the open geometry. Likewise, the closed geometry serves as a comparative
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Figure 1.2 Three dimensional slab waveguide. The different refractive indices are indicated by
different colors. Specifically, the core region of the waveguide is red, and the cladding region is
blue.

foundation for results obtained in the open geometry.
The closed geometry approach assumes that the investigated structure is enclosed inside

perfectly conducting walls, and hence that the electric field vanishes at and outside of these
boundaries. This provides a set of homogeneous boundary conditions that form a regular
Sturm-Liouville problem for the x-eigenmodes. Further calculations benefit immensely
from this because a discrete and complete set of orthogonal eigenmodes are determined.
Physically, enclosing the structure inside perfectly conducting walls resembles a situation
in which the structure is enclosed inside metallic walls. The approach of calculating optical
eigenmodes in a closed geometry is highly analogous to the well-studied calculation of wave-
functions in an infinite potential-well. The wave-functions in the infinite potential-well are
determined from the solutions to the time-independent Schrödinger equation, subject to
the same boundary conditions as the closed geometry. In determining optical eigenmodes,
the Helmholtz equation is solved, and since the Schrödinger and the Helmholtz equations
both involve the Laplace operator, mathematically their respective solutions are identical.

The results obtained in the closed geometry approach serve to illuminate the short-
comings of this method. Due to the perfectly conducting walls, parasitic interference
effects perturb the electric field. Even when the size of the closed geometry is increased
substantially, interference effects continue to exist, but the region of negligible interference
increases. Furthermore, modeling of the spontaneous emission rate is shown to depend
heavily on the width of the geometry, and poorly converging and oscillatory results are
obtained as the width is increased. A possible solution to diminish the effects of the finite
size of the geometry includes the introduction of advanced boundary conditions such as
perfectly matched layers [Gregersen3, Chapter 3].

This project, however, seeks to circumvent the problem entirely by removing the
boundary conditions at the outer boundaries, and instead study an open geometry. The
open geometry may conveniently be thought of as the limiting case of the closed geometry
where the width of the closed geometry tends to infinity. Further, the open geometry,
as the closed geometry, has an analogous in quantum mechanics, namely solutions to
the Schrödinger equation in finite potential domains. Work on waveguide layers in an
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open geometry has been carried out in [Tigelis], and the study of the open geometry
in this project takes its foundation in this paper. Pursuing the open geometry rather
than application of advanced boundary conditions is motivated by the hope of obtaining
more accurate results for the normalized spontaneous emission rate. The Q-factor of
microcavities relates directly to the normalized spontaneous emission rate [Purcell], and
numerical calculations of the Q-factor in micropillar cavities by use of an improved
perfectly matched layer technique obtained relative errors on the order of 10%. It is,
however, assumed that the physically more realistic approach of an open geometry will
yield even better results [Gregersen2].

In Chapter 2, the Maxwell equations and a number of assumptions concerning the
structure to be investigated are employed to derive the Helmholtz equations that govern
the electric and magnetic fields, respectively. Furthermore, the polarization of the electric
field is discussed, and this leads to a scalar Helmholtz equation. This scalar equation is
a partial differential equation for which generic solutions are given which concludes the
chapter.

Chapter 3 introduces and analyzes the closed geometry approach. Boundary conditions
along both x and z are used in connection with the generic solutions to the scalar Helmholtz
equation to expand the field everywhere inside the closed geometry. Having determined
the electric field, the spontaneous emission rate related to a dipole current source inside
the structure is expressed as a function of the width of the geometry, and, as earlier
stated, both the field plots and the calculations of the spontaneous emission rate uncover
the limitations of the closed geometry approach.

In Chapter 4, the open geometry approach for uniform and waveguide layers is
introduced. The different types of x-eigenmodes in these layers that may comprise both
a set of discrete eigenmodes as well as a continuum of eigenmodes are derived and
discussed. The expansion of the electric field is presented, and this is used to determine
the spontaneous emission rate as a function of the degree of discretization of the electric
field. Contrary to the closed geometry, these results converge.

Chapter 5 finally presents an open geometry of two layers, and essentially this chapter
is concerned with the determination of reflection and transmission at the layer interfaces
in two-layered structures. Field plots and plots of reflection and transmission coefficients
are presented, and an outline for the determination of the spontaneous emission rate in a
three-layer open geometry is given.



Chapter 2
Wave Equations

2.1 Introduction

In this chapter, the Helmholtz equations that govern the propagation of the electromag-
netic waves (EWs) are derived. The derivation starts from Maxwell’s equations, and a
number of assumptions concerning the slab structures are applied. Subsequently, the
polarization of the EWs is discussed and in connection with the coupling between the
electric and magnetic fields, a scalar Helmholtz equation for the electric field is presented
and solved. This general solution is used in the further analysis of both the closed
geometry (Chapter 3) and the open geometry (Chapters 4 and 5).

The definitions and derivations in this chapter follow the outline in [Griffiths, Gregersen1].

2.2 Maxwell Equations and Helmholtz Equation

The point of departure for the analysis of the slab structure is Maxwell’s equations:

∇ ·D = ρf , (2.1a)
∇ ·B = 0, (2.1b)

∇×E = −∂B
∂t
, (2.1c)

∇×H = Jf + ∂D
∂t

, (2.1d)

where D,B,E, and H are the electric displacement field, the magnetic field, the electric
field, and the magnetic H-field, respectively, and where ρf and Jf are the free charge
density and free current density, respectively. In linear media, which are assumed
throughout the report, the electric and magnetic fields, respectively, are related through
the following constitutive relations:

D = εE ≡ ε0(1 + χe)E, (2.2a)
B = µH ≡ µ0(1 + χm)H, (2.2b)

where ε, ε0, χe, µ, µ0, and χm are the permittivity, the vacuum permittivity, the electric
susceptibility, the permeability, the vacuum permeability, and the magnetic susceptibility,
respectively. These quantities are material parameters and are assumed piecewise constant
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6 CHAPTER 2. WAVE EQUATIONS

in space which will be further elaborated in the treatment of the geometries to be analyzed
in the following chapters. In the semiconductors that structures of this project is assumed
consisting of, the density of free charges is minuscule and the materials are non-magnetic,
and therefore it is assumed that ρf = 0, Jf = 0, and µ = µ0. Similarly, it is assumed
that the fields are separable in a spatially dependent and a time-dependent part, where
the time-dependence for the fields is assumed harmonic:

F(r, t) = Fsp(r) exp(−iωt), F ∈ {E,D,B,H}. (2.3)

The subscript sp denotes the spatially dependent parts of the fields, and ω denotes the
angular frequency of the harmonic time dependence. As given by the time-dependence in
Eq. (2.3), complex notation is used to express the fields, and throughout the report the
corresponding physical fields are given as the real parts of these.

In the following, all fields are implicitly spatially dependent, that is, F(r) ≡ Fsp(r),
while the time-dependence is explicit. With these assumptions and the constitutive
relations in Eqs. (2.2), the Maxwell equations reduce as follows:

∇ ·D = ∇ · (εE) = ε exp(−iωt)∇ ·E(r) = 0
m

∇ ·E(r) = 0, (2.4a)

∇ ·B = ∇ · (µ0H) = µ0 exp(−iωt)∇ ·H(r) = 0
m

∇ ·H(r) = 0, (2.4b)

(∇×E(r)) exp(−iωt) = − ∂

∂t
(µ0H(r) exp(−iωt)) = µ0iωH(r) exp(−iωt)

m
∇×E(r) = µ0iωH(r), (2.4c)

(∇×H(r)) exp(−iωt) = ∂

∂t
(εE(r) exp(−iωt)) = −εiωE(r) exp(−iωt)

m
∇×H(r) = −εiωE(r). (2.4d)

To avoid cumbersome notation, the conventions E ≡ E(r) and H ≡ H(r) are used in
what follows. Then, by applying the curl operator on both sides in Eqs. (2.4c) and (2.4d),
the following identities are obtained:

∇× (∇×E) = ∇(∇ ·E)−∇2E = µ0iω(∇×H), (2.5a)
∇× (∇×H) = ∇(∇ ·H)−∇2H = −εiω(∇×E). (2.5b)

Eqs. (2.4a) and (2.4b) require that both E and H are divergence-free. Using this and the
identities for the curls of E and H in Eqs. (2.4c) and (2.4d), respectively, finally decouples
the equations:

−∇2E = µ0εω
2E⇔ ∇2E + µ0εω

2E = 0, (2.6a)
−∇2H = µ0εω

2H⇔ ∇2H + µ0εω
2H = 0. (2.6b)
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The wave number – or propagation constant – of free space, k0, is related to the angular
frequency, ω, through ω = k0c. Also, since µ = µ0, the refractive index, n, is given as
n = √εr. Applying this, the expression µ0εω

2 can be rewritten to a form more suitable
for the ensuing treatment:

µ0εω
2 = µ0εrε0k

2
0c

2 = µ0ε0c
2εrk

2
0 = n2k2

0. (2.7)

Insertion of this in Eqs. (2.6) finally produces Helmholtz equations for the E- and H-fields,
respectively:

∇2E + n2k2
0E = 0,

∇2H + n2k2
0H = 0.

(2.8a)
(2.8b)

Eqs. (2.8) are a set of partial differential equations (PDEs) in each of the three Cartesian
components of the electric field and of the magnetic field, respectively. All future
references to the electric field and the magnetic field will implicitly be to the E- and
H-fields, respectively. In the following sections, the polarization of the EW and the
coupling between the electric and magnetic fields will be discussed, which leads to a
significant reduction in the number of PDEs to be solved.

2.3 Polarization

This section presents a brief discussion of the possible polarization types. To this end,
a few concepts need to be presented, and reference in the following is made to Fig. 1.2.
The normal to an interface plane is a direction along which the refractive changes, that
is, the xy- and yz-planes are interface planes (in the figure, the structure has no variation
along the z-direction, however, structures with variation along z will be treated). The
plane of incidence for each of the interface planes is the plane that contains the k-vector,
defining the propagation direction, and that is perpendicular to the interface plane. In
this case, this makes the xz-plane a mutual plane of incidence for the interface planes.

Three different types of polarization exist, namely transverse electric (TE), transverse
magnetic (TM), and transverse electromagnetic (TEM).

• TE-waves: The electric field is perpendicular, or transverse, to the plane of incidence,
and consequently Ex = Ez = 0. The polarization of the magnetic field can be found
from the fact that E, H and k must be mutually orthogonal.

• TM-waves: The magnetic field is transverse to the plane of incidence such that
Hx = Hz = 0. The polarization of the electric field can be found by application of
the orthogonal relationship between E, H and k.

• TEM-waves: The electric and magnetic field are both transverse to the plane of
incidence. This is only possible if the k-vector points along z, such that two distinct
planes of incidence can be defined.

In the types of structures treated in this report, the TEM-waves do not satisfy the
Maxwell equations and corresponding boundary conditions, and this type of polarization
is therefore not discussed any further [Griffiths, p. 407]. As discussed in the introductory
chapter, the treatment of TM-waves is omitted, and thus TE-waves are assumed onward.

Slab structures with regions of different refractive indices, constant within different
regions, will be treated in Chapters 3, 4, and 5, and as will be shown, fully analytical
solutions of the Helmholtz equations do not exist for these. Therefore, numerical methods
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will be applied, and due to computation time and memory limitations this calls for
assumptions that will reduce the calculations from the full 3D-problem into a 2D-problem.
As argued in the previous chapter, this is obtained by assuming that the geometry is
large in extent along y as the electric field then only depends on x and z.

2.4 Coupling of E- and H-Fields

Expressing Eq. (2.4c), by use of Ex = Ez = 0, gives:

∇×E =



∂Ez
∂y
− ∂Ey

∂z

∂Ex
∂z
− ∂Ez

∂x

∂Ey
∂x
− ∂Ex

∂y


=


−∂Ey
∂z

0

∂Ey
∂x


= µ0iω


Hx

Hy

Hz

 , (2.9)

which shows that once the electric field (or more precisely: the only non-zero component
of the E-field, Ey) is determined, the magnetic field is given. Therefore, throughout the
rest of this report, the EWs are described in terms of the electric field. In the following
section, the Helmholtz equation in Eq. (2.8a) is solved for the y-component of the electric
field, Ey.

2.5 Solution of Scalar Helmholtz Equation

As a result of the discussions in the preceding sections, the vector PDE in Eq. (2.8a) can
be reduced to a scalar PDE in Ey:

∇2Ey + n2k2
0Ey = 0. (2.10)

The solutions to the PDE depend on the types of boundary conditions (BCs) that are
applied, but before discussing the BCs further, a general solution to the equation is
derived. The PDE in Eq. (2.10) is a linear and homogeneous PDE, and therefore it is
natural to attempt a product solution. To this end, it is assumed that Ey is separable in
an x- and in a z-dependent part:

Ey(x, z) = ex(x)ez(z) ≡ exez. (2.11)

The assumption of a product solution will be validated when ex(x) and ez(z) have been
determined. Next, the product solution is inserted in Eq. (2.10):

∇2(exez) + n2k2
0exez = 0, (2.12a)

m
d2ex
dx2 ez + d2ez

dz2 ex + n2k2
0exez = 0 (2.12b)

m
1
ez

d2ez
dz2 = −

(
1
ex

d2ex
dx2 + n2k2

0

)
≡ −β2. (2.12c)
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Formally, the second bi-implication is only valid where exez 6= 0. Since the left hand side
of Eq. (2.12c) only depends on z, and the right hand side only depends on x, they must
both equal the same constant, −β2. Then, the PDE may be decoupled into two ordinary
differential equations (ODEs):

d2ex
dx2 = −(n2k2

0 − β2)ex ≡ −κ2ex, (2.13a)

d2ez
dz2 = −β2ez. (2.13b)

The ODEs in Eqs. (2.13) are on the Sturm-Liouville (SL) form, and if the corresponding
BCs also are of SL-form, the ODEs have an infinite number of solutions. Also, the
eigenvalues, −β2 and −κ2, are real and form increasing sequences where each eigen-
value correspond to one eigenmode. In this context, each eigenvalue and corresponding
eigenmode may conveniently be labeled by some index, e.g. j = 1, 2, 3, . . . . Finally, the
solutions to each of the ODEs form an orthogonal set [Asmar, Chapter 6]. Strictly, these
facts only hold for regular SL-problems, but as will be discussed in Section 3.2, the closed
geometry forms a regular SL-problem. The solutions to the ODEs are:

ex,j(x) = aj exp(iκjx) + bj exp(−iκjx),
ez,j(z) = c1,j exp(iβjz) + c2,j exp(−iβjz),

(2.14a)
(2.14b)

where aj , bj , c1,j , c2,j and βj are constants that must be determined for any j = 1, 2, 3, . . . .
Once βj is determined, κj is implicitly given. In Appendix B.1, it is verified that the
product solution defined by Eqs. (2.11) and (2.14) satisfies the scalar Helmholtz equation
in Eq. (2.10) for an arbitrary j.

The open geometry is not a regular SL-problem, but the modes are, nonetheless, still
represented by the generic forms in Eqs. (2.14). As discussed in Chapters 4 and 5, the
eigenmodes in the open geometry generally comprise a finite number of discrete modes
and a continuum of modes, termed guided modes and radiation modes, respectively.
These satisfy orthogonality relations presented in the mentioned chapters.

With the harmonic time-dependence in Eq. (2.3), the two terms in the solution for
the x-dependent part of Ey may be interpreted as a forward and a backward propagating
wave along the x-direction:

• exp(iκjx) represents a wave that propagates along the positive x-direction.

• exp(−iκjx) represents a wave that propagates along the negative x-direction.

The same holds for the z-dependent part of Ey, that is, the first term in Eq. (2.14b)
represents a wave that propagates along the positive z-direction while the second term
represents a wave propagating along the negative z-direction.

The solutions in Eqs. (2.14) are valid when βj and κj are constant in space. Therefore,
the solutions of the ODEs are only valid when the refractive index, n, is constant which
restricts this method to step-profile geometries in which the refractive index is constant
in certain regions. The solution must be carried out separately in each region of constant
refractive index and then coupled to solutions in adjacent regions by application of BCs.
This explains the assumption of piecewise constant material parameters, discussed in
Section 2.2.

Over any interface, it is demanded that the parallel component of the electric field
is continuous. Hence, by the discussion of the interface planes and the polarization in
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Section 2.3, the electric field must be continuous in all points [Griffiths, p. 333]. From
the coupling between the E- and H-fields (presented in Section 2.4) and for the H-field
to remain finite, it must likewise be demanded that the electric field is differentiable in
all points. Thus, the demands for continuity and differentiability determines the BCs.
However, the actual formulation and application of these BCs, needed to determine the
constants in Eqs. (2.14), depend on the structure under investigation, and furthermore
different approaches are used along x and z. The details of these are presented in Chapter 3
for the closed geometry and in Chapters 4 and 5 for the open geometry.

2.6 Summary

In this chapter, vectorial wave equations for the E- and H-fields, both on the Helmholtz
form, have been derived from the Maxwell equations. Considerations of the slab struc-
ture, the polarization and the coupling between the electric and magnetic fields led to
simplifications that allowed the vectorial PDEs to be reduced into a single scalar PDE
in the y-component of the electric field, Ey. By assuming that Ey was separable in x-
and z-dependent functions, the PDE was decoupled into ODEs in these functions that
were on the Sturm-Liouville form. Following this, generic solutions that did not take
into account the BCs were given. Most importantly, these solutions, or eigenmodes, form
complete and orthogonal sets. Given this property, the electric field in the structures may
be expanded on these eigenmodes, and in brief the task is to determine the corresponding
expansion coefficients in the various structures to be analyzed. The determination of
the eigenmodes and eigenvalues (propagation constants) and further of the expansion
coefficients is of central importance in the following work, and is a dominant topic in the
following chapters.



Chapter 3
Closed Geometry

3.1 Introduction

This chapter will introduce a first approach to calculating the electric field in an arbitrary
refractive index geometry, due to an incident wave. A closed geometry approach in
which the geometry is limited to a finite size along the x-axis will be employed. This
approach significantly simplifies the calculations as it ensures an infinite and discrete set
of eigenmodes. The chapter also serves to illustrate the principles and theory necessary
to accurately determine transmission and reflection effects at boundaries, inter alia via
the introduction of a scattering matrix formalism.

As described in Chapter 2, it suffices to determine the y-component of the E-field,
Ey, when investigating the electric field. The challenge in the determination of Ey is the
derivation of the x-dependent part of the field, the eigenmodes, since the z-dependent
parts are then implicitly determined from Eq. (2.14b). Firstly, geometries with uniformity
along z are considered. Proceeding to include non-uniformity along z prompts the need
for a scattering matrix formalism that serves to ensure continuity and differentiability
across z-interfaces.

x

z

0 Lx

[1] [2] [3]

[1]

[1] [2]

{1}

{2}

{3}

Figure 3.1 Closed geometry of three layers that are divided into three, one and two zones,
respectively.

The numerical results from the closed geometry approach will serve to clarify the
need for another approach, and specifically parasitic reflections due to the x-boundaries
will be discussed. Using the developed closed geometry theory, the spontaneous emission
rate due to a dipole will be examined by determining the power emitted from the dipole.

11
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The results of this examination will further clarify the limitations of the closed geometry
approach.

Before proceeding, a terminology for the geometries is established. Fig. 3.1 shows
a geometry of three layers that contain three, one and two zones, respectively. A layer
denotes a part of the geometry in which the refractive index is constant along z. Each layer
may be divided into several zones that are regions of the layer with constant refractive
index along x. A layer is denoted by a number in curled brackets, and in each layer the
zones are denoted by numbers in edged brackets. From this point, this convention applies
to all figures and quantities that are presented. Thus, e.g. the x-propagation constant
corresponding to the jth eigenmode, in the qth layer and in the kth zone is κ{q},[k]

j .

3.2 x-Boundary Conditions

Initial Description

A geometry with uniformity of the refractive index along z is shown in the illustrations
in Fig. 3.2. In the terminology introduced in the previous section, the illustrations depict
a single layer divided into three zones with distinct refractive indices, and this case is
that of an asymmetrical waveguide. In the illustrations, the outer x-boundaries at x = 0
and x = Lx and the inner boundaries at x = L1,2 and x = L2,3 are indicated.

In the following, a model to determine eigenmodes for layers with an arbitrary number
of zones and arbitrary refractive indices is developed. It should be noted that although the
formalism will be able to handle arbitrary variations, the actual numerical implementation
will enforce a practical limit on the number of zones and layers, the maximum variations
of the refractive indices and the minimum zone and layer widths.

x

z

0 LxL1,2 L2,3

n1 n2 n3

(a) xz-profile in a layer with uniformity of the
refractive index along z. The refractive index
in each zone is marked.

x

n(x)

0 Lx

[1] [2] [3]

0 LxL1,2 L2,3

(b) Refractive index profile, n(x), along the x
direction. Each zone is denoted by a numeral.

Figure 3.2 Single layer uniform along z.

As mentioned in Section 2.5, the electric field for TE-waves should be continuous
and differentiable in all points. Referring to the solutions of the Helmholtz equation,
given in Eq. (2.14a), it is apparent that the solutions inside each zone fulfill these criteria.
However, it must be ensured that the criteria are also fulfilled at each zone boundary,
that is, an allowed mode profile should be continuous and differentiable across any zone
boundary. Considering a certain ex,j(x) in an arbitrary zone, p, and denoting it by e[p]

x,j(x),
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the inner BCs can be written as:

e
[p]
x,j(Lp,p+1) = e

[p+1]
x,j (Lp,p+1), (3.1a)

de[p]
x,j

dx

∣∣∣∣∣
x=Lp,p+1

=
de[p+1]
x,j

dx

∣∣∣∣∣
x=Lp,p+1

, (3.1b)

for all p = 1, 2, . . . , P − 1, where P equals the total number of zones in the layer. This is a
general result that holds for both the closed and the open geometry approaches. However,
the outer BCs differ in the two approaches. For the closed geometry, it is assumed that
each layer is bordered by perfectly conducting walls at x = 0 and at x = Lx. As a result
of this, the electric field must vanish at x = 0 and at x = Lx:

e
[1]
x,j(0) = 0, (3.2a)

e
[P ]
x,j(Lx) = 0. (3.2b)

By combining the inner BCs from Eqs. (3.1) with the outer BCs from Eqs. (3.2), a total
of 2P BCs are obtained. It is noticed that the outer BCs are homogeneous Dirichlet
BCs whereby the homogeneous ODEs in Eq. (2.13a) constitute regular Sturm-Liouville
problems. As a consequence of this, the corresponding eigenmodes form an orthogonal
basis for all functions in L2(0, Lx) [Christensen2, Theorem 10.1.6]. This implies that any
closed geometry wave profile may be expanded on these eigenmodes, and the determination
of the eigenmodes is discussed in the following section.

Eigenvalues and Eigenmodes
The jth eigenmode in a layer of P regions is determined when the corresponding eigenmode
coefficients (a[1]

j , b
[1]
j , a

[2]
j , b

[2]
j , . . . , a

[P ]
j , b

[P ]
j ) and propagation constants (κ[1]

j , κ
[2]
j , . . . , κ

[P ]
j )

have been determined. The determination of these is enabled by coupling the general
solutions from Eq. (2.14a) with the BCs given in Eqs. (3.1) and (3.2). In Appendix C.1,
a homogeneous matrix equation, Ajcj = 0, is derived, where cj contains the eigenmode
coefficients:

cj =
[
a

[1]
j , b

[1]
j , a

[2]
j , b

[2]
j , . . . , a

[P ]
j , b

[P ]
j

]T
. (3.3)

The matrix Aj is presented in Appendix C.1 along with the corresponding zone-solution
form, see Eq. (C.2).

The homogeneous matrix equation Ajcj = 0 is directly dependent on the values of κ[p]
j ,

and these values are given through κ
[p]
j =

√
n2

[p]k
2
0 − β2

j , cf. Eq. (2.13a), where it should
be noted that n[p] and k0 are known constants, whereas βj is unknown. Since trivial
solutions are of no interest, values of β2 for which the matrix equation has non-trivial
solutions are sought for, and these are denoted β2

j . In order to obtain non-trivial solutions,
the P × P matrix, Aj , must be singular which is obtained when the determinant of Aj

vanishes. According to SL theory, there exists only one eigenmode for each eigenvalue,
and therefore the rank of the matrix must equal P − 1. The matrix Aj is, as previously
mentioned, implicitly a function of the squared z-propagation constant, β2. The largest
allowable value of β2 equals n2

maxk
2
0, where nmax is the maximum of the step-profile, n(x).

No modes can exist above this limit, since κ[p]
j would then take on imaginary values in
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all zones. This would result in exponentially in- or decreasing zone-solutions in all zones
which would violate the BCs. As a consequence of this, an infinity of eigenmodes must
exist in the interval:

−∞ < β2 < n2
maxk

2
0. (3.4)

Since −β2
j constitute an increasing sequence, it is natural to apply a numerical solver to

scan through the possible β2-values from n2
maxk

2
0 and downwards. Each cj is then given

as the solution to the homogeneous matrix equation for each value of β2
j . Determining

the solution is the equivalent of determining the kernel, or null-space, of Aj(β2
j ). This

implies that the solutions can be scaled by any complex factor since the kernel is the span
of a vector.

To illustrate the oscillations of the determinant, the real and imaginary parts of det(A)
for a specific layer are plotted in Fig. 3.3 illustrating the determination of the first five
values of β2. These fulfill that Re(det(A)) = Im(det(A)) = 0, and numerical solving
of the problem must consequently take care to ensure that both requirements are met
simultaneously.

20 30 40 50 60

−100

−50

0

50

100

β2 [µm−1]

 

 

Re(det(A))
Im(det(A))
Roots

Figure 3.3 Real and imaginary part of det(A). The layer is a waveguide layer of width
Lx = 10µm with core-width 2µm and refractive indices 1 and 2 in the cladding and core,
respectively.

This method is termed the semi-analytical approach as the solutions consist of fully
analytical expressions with the exception that the propagation constants βj and κj and
coefficients in cj are determined numerically.

3.3 Normalization

In order for the sequence of semi-analytical eigenmodes, {ex,j(x)}∞j=1, to constitute not
only an orthogonal basis, but an orthonormal basis, each eigenmode is normalized with
respect to the Power inner product, 〈·, ·〉p, given its name due to its similarity with the
Poynting vector [Snyder, Chapter 11-4]:

〈ej , ei〉p = 1
2

∫
xy−plane

(ej(x, y)× h∗i (x, y)) · ẑ dA. (3.5)

ej and ei are vectorial eigenmodes in the xy-plane, that is, the x-dependent parts of the
E-fields. Similarly, hi is a vectorial magnetic eigenmode in the xy-plane, and ẑ is a unit
vector along z. The mathematical definitions of ej and hi are given in Appendix C.2.
Finally, the integration is across the entire xy-plane which reduces to integration along x
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since the y-integration is neglected. Using this, the coupling between the E- and H-fields
(Eq. (2.9)), and the fact that the only non-zero component of E is Ey, an expression for
the inner product is derived in Appendix C.2, and this expression is:

〈ej , ei〉p = β∗i
2µ0ω

∫ Lx

0
ex,j(x)e∗x,i(x) dx. (3.6)

It is profitable to define µ0ω ≡ 1, as it ensures clarity of the inner product. The choice of
µ0ω ≡ 1 introduces a scaling of the electric field, and consequently this field is given in
arbitrary units henceforth. The Power inner product rather than other, simpler inner
products is chosen since it facilitates a calculation of the spontaneous emission rate, see
Section 3.8. It is noticed that the choice of µ0 effectively scales all calculations of the
spontaneous emission rate, but since only sponatenous emission rate ratios are of interest,
this choice will have no impact on the results.

A normalized eigenmode, which from now is denoted ej , relates to a non-normalized
eigenmode, ěj , through the following expression:

ej = 1√
Nj
ěj , (3.7)

where Nj is the normalization constant. The normalization constant is connected to the
inner product of two equal eigenmodes, N ′j , through:

N ′j ≡ 〈ěj , ěj〉p ≡
β∗j
|βj |
Nj , (3.8)

where the prefactor β∗j /|βj | ensures that Nj is a positive real constant. The orthonormality
condition for the eigenmodes is defined as:

〈ej , ei〉p =
β∗j
|βj |

δij , (3.9)

where δij is the Kronecker delta. In other words, the normalization constant of a
normalized mode is Nj = 1, which explains the need for Nj to be positive and real.

The computation of the inner product, and thereby also of the normalization constants,
can be carried out analytically since the eigenmodes are given as analytical functions. In
the general case of a layer with more than one zone the expression in Eq. (3.6) must be
rewritten into a sum of integrals, one for each zone. The fact that the inner products can be
computed analytically has large advantages compared to a numerical integration approach,
in the form of speed and precision. Finally, it is noted that the inner product between
eigenmodes of different layers takes on a central role in the calculation of transmission
and reflection matrices in Section 3.6.

3.4 Eigenmodes

Different types of eigenmodes, ex,j(x), may exist in different regions of constant refractive
index. In this context, the x-propagation constant in the pth zone, κ[p]

j , that is defined in
Eq. (2.13a) as:

κ
[p]
j =

√
n2

[p]k
2
0 − β2

j , (3.10)

plays an important role:
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• When κ
[p]
j is real, the eigenmode is oscillatory in the pth zone.

• When κ[p]
j is imaginary, the eigenmode is exponentially in- or decreasing in the pth

zone.

Whether κ[p]
j is real or imaginary, is decided by the refractive index of the zone, n[p], and

by the value of βj :

• κ[p]
j is real when β2

j ≤ n2
[p]k

2
0.

• κ[p]
j is imaginary when β2

j > n2
[p]k

2
0.

The case where β2
j = n2

[p]k
2
0, or in other words where κ[p]

j = 0, represents a field profile
that is constant along x. Since the BCs at x = 0 and at x = Lx demand that the field
equals zero at these points (Eqs. (3.2)), the total field is equal to zero, and it therefore
does not contribute to the set of orthogonal eigenfunctions. It is worth stressing that the
values of βj are identical for all zones in a layer, and since the refractive index varies
between zones, different mode-types can exist in different zones in a layer, cf. Eq. (3.10).

In Fig. 3.2(b), a general three-zone layer with a step-index profile was presented. Now,
to introduce the main characteristics of different modes, the simpler symmetric layer with
n1 = n3 < n2 is investigated. The n(x)k0-profile for such a layer can be seen in Fig. 3.4.
As discussed in Section 3.2 and expressed in Eq. (3.4), all values of βj are smaller than
n2k0. This is tantamount to ensure that the values of κj in zone 2 are always real, and
hence that the mode profiles in the high refractive index zone are always oscillatory.
Therefore, the following discussion serves to determine when the mode profiles in zones 1
and 3 are exponentially decaying and when they are oscillatory. These different types of
eigenmodes are termed guided modes and semi-radiating modes, respectively.

x

n(x)k0

0 Lx

βk

βl

n1k0

n2k0

0 LxL1,2 L2,3

Guided modes:
n2

2k
2
0 > β2

k > n2
1k

2
0.

Semi-radiating modes:
n2

1k
2
0 > β2

l > −∞.

Figure 3.4 Plot of n(x)k0 as function of x for a symmetric layer in a closed geometry. The
refractive indices fulfill n1 = n3 < n2. The condition for guided and semi-radiating modes are
summarized and indicated schematically, and a guided and a semi-radiating mode are sketched.

Fig. 3.4 also defines two different values of βj : βk and βl with k < l. For βk the value
of the square of the x-propagation constant in zones 1 and 3, κ[1,3]

k , is:(
κ

[1,3]
k

)2
= n2

1k
2
0 − β2

k < 0, (3.11)

and therefore κ[1,3]
k is imaginary: The mode profiles in zones 1 and 3 are exponentially in-

or decreasing. For βl, the square of the propagation constant is:(
κ

[1,3]
l

)2
= n2

1k
2
0 − β2

l > 0, (3.12)
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and κ
[1,3]
l is real: The mode profiles in zones 1 and 3 are oscillatory. Obviously, the

transition from guided modes to semi-radiating modes occurs when the value of βj
decreases below n1k0.

Moving on to display eigenmode profiles, the used wavelength must first be defined:
Throughout the report, the wavelength λ = 1.55µm is used in all numerical simulations,
unless otherwise stated. The wavelength 1.55µm is chosen because it is commonly used
in optical communication.

Initially, examples of eigenmodes in a symmetric waveguide are presented in Figs. 3.5.
The fourth mode which is a guided mode can be seen in Fig. 3.5(a). In zone 2, the mode
is oscillatory, and in zones 1 and 3 it is exponentially decaying. That it is in fact the
fourth mode, is verified by noting that the oscillatory part of the field fits two wavelengths
in the layer. Fig. 3.5(b) displays the twentieth mode which is a semi-radiating mode, and
the mode is oscillatory in all zones. The behaviors for both modes are as expected, cf.
the above discussion of the different values of βj .
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(a) Guided mode. Fourth mode, ex,4(x).
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(b) Semi-radiating mode. Twentieth mode, ex,20(x).

Figure 3.5 Mode profiles of x-dependent part of electric field, ex,j(x), in a symmetric waveguide
layer of three zones in a closed geometry. The parameters of the geometry are: L1,2 = 4µm,
L2,3 = 6µm, Lx = 10µm, n1 = n3 = 1 and n2 = 2.

To further illustrate the influence of the geometry and corresponding refractive index
profiles on the eigenmodes, two additional layer-types are investigated. The refractive
index profiles of these layers are defined in subfigures (a) of Figs. 3.6 and 3.7, and selected,
corresponding mode profiles can be found in subfigures (b).
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(a) Refractive index profile: n(x) as function of x.
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(b) Sixth mode profile, ex,6(x).

Figure 3.6 Symmetric layer with five zones in a closed geometry.



18 CHAPTER 3. CLOSED GEOMETRY

In Fig. 3.6(a), a symmetric geometry with two zones of refractive index n = 2 and
three zones of refractive index n = 1 has been defined, and the sixth mode profile, ex,6(x),
is plotted in Fig. 3.6(b). In the zones of highest refractive index, the mode oscillates, and
in the three zones of lower refractive index the mode is exponentially decaying which thus
makes it a guided mode. The geometry could represent two fibers in close vicinity where
the zones of n = 2 and n = 1 represent the fiber cores and claddings, respectively.
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(a) Refractive index profile: n(x) as function of x.
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(b) Twelfth mode profile, ex,12(x).

Figure 3.7 Asymmetric layer with three zones in a closed geometry.

In Fig. 3.7(a), an asymmetric waveguide with three zones of refractive indices n = 1, 3, 2,
respectively, has been defined, and in Fig. 3.7(b) the twelfth mode profile, ex,12(x), is
plotted. The mode oscillates in the zones of refractive indices n = 2, 3 and is exponentially
decaying in the zone with n = 1, which, by extending the previous naming convention,
makes it a ’semi-guided’ or ’semi-semi-radiating’ mode.

Finally, the significance of the βj-values in relation with the z-dependent part of
the field is discussed briefly. The sign of β2

j clearly determines if βj is real (zero or
positive sign) or imaginary (negative sign). Referring to the solutions in Eq. (2.14b), it
is concluded that real βj represent fields oscillating along z, that is, propagating waves,
whereas imaginary βj represent exponentially decaying fields along z, that is, evanescent
waves.

In Section 3.6, the case of multiple layers is investigated by introducing the BCs that
ensure continuity and differentiability of the field along z. Next, Section 3.7 presents 2D
field profiles in structures of multiple layers and zones based on the BCs developed in
the preceding section. However, before the z-BCs and field profiles can be derived and
presented, a representation of the field as an expansion on the eigenmodes is given in the
following section.

3.5 Eigenmode Expansion

As discussed in Chapter 2, the x-dependent eigenmodes, ex,j , j = 1, 2, . . . , form an
orthogonal set, and with the normalization described in Section 3.3 also an orthonormal
set, of eigenmodes. Hence, the electric field, Ey(x, z) ≡ E(x, z), may be expanded on
these eigenmodes in the following manner:

E(x, z) =
∞∑
j=1

Aj exp(iβjz)ex,j +
∞∑
j=1

Bj exp(−iβjz)ex,j , (3.13)



3.6. Z-BOUNDARY CONDITIONS 19

where Aj and Bj are constants that will be determined using the boundary conditions
along z. The first sum-term represents the forward propagating part of the field, and
the second sum-term represents the backward propagating part, both along z. For the
definition in Eq. (3.13) to be applicable in numerical computations, the infinite sums
must be uniformly convergent. Assuming this, for any ε > 0 there exists an N0 ∈ N such
that [Christensen1, Definition 5.27]:∣∣∣∣∣∣E(x, z)−

 N∑
j=1

Aj exp(iβjz)ex,j +
N∑
j=1

Bj exp(−iβjz)ex,j

∣∣∣∣∣∣ < ε, (3.14)

valid ∀N ≥ N0, ∀x ∈ [0, Lx]. Therefore, in practice a finite number of eigenmodes, N ,
will be used to expand the electric field.

3.6 z-Boundary Conditions

This section treats the situation of two and more layers. Specifically, the BCs along z
will be employed to evaluate the electric field in all zones and all layers. The BCs along z
remain identical to the inner BCs along x, namely that the electric field is continuous
and differentiable in all points and in particular at all interfaces along z. Using these
conditions and the previously determined eigenmodes, a matrix approach that handles
the reflections and transmissions across layers will be developed. Although the z-BCs
are identical to the x-BCs, the application of these BCs will differ significantly from the
application of the x-BCs that were treated in Section 3.2.

The theory presented largely follows the outline in [Gregersen1].

Reflection and Transmission Between Layers
Two layers will be treated in this section, and an illustration of two such layers, each
consisting of three zones, is shown in Fig. 3.8(a). Fig. 3.8(b) illustrates the reflections
and transmissions schematically: The electric field on either side of the interface, situated
at z = z1,2, is represented by a forward and a backward propagating part (blue arrows)
that correspond to the two linearly independent solutions in Eq. (2.14b). At the interface
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(a) Two-layer structure.
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R1,2 R2,1

T1,2
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{1} {2}
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(b) Reflection and transmission at a layer-
interface.

Figure 3.8 Two-layer structure.

and in both layers, part of the field is transmitted and part of the field is reflected which
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is represented by the transmission and reflection matrices, T1,2, T2,1, R1,2, R2,1. With
reference to the representation of the electric field, E(x, z), in Eq. (3.13), the electric
fields on either side of the interface may be expressed as:

E1(x, z) =
N∑
j=1

A
{1}
j exp(iβ{1}j (z − z0,1))e{1}x,j +

N∑
j=1

B
{1}
j exp(iβ{1}j (z1,2 − z))e{1}x,j ,

(3.15a)

E2(x, z) =
N∑
j=1

A
{2}
j exp(iβ{2}j (z − z1,2))e{2}x,j +

N∑
j=1

B
{2}
j exp(iβ{2}j (z2,3 − z))e{2}x,j ,

(3.15b)

where a superscript {p} indicates the pth layer. Compared to the expression in Eq. (3.13),
where the coefficients are defined relative to z = 0, the coefficients for each layer in
Eqs. (3.15) have been defined relative to the interfaces that enclose the layer, respectively.
Evidently, these definitions do not alter any physical properties, but are merely related to
the numerical implementation.

In words, the elements in the four matrices represent how much each mode in each of
the layers transmits and reflects to the modes in the other layer and in the same layer,
respectively. For simplicity, it may be assumed that the structure is illuminated by a
single forward propagating mode, m, in layer 1. The expansion coefficients, A{1}j and
B
{2}
j , from Eqs. (3.15) then reduce to:

A
{1}
j = δjm, (3.16a)

B
{2}
j = 0. (3.16b)

Another consequence of the assumption is that the matrices T2,1 and R2,1 become
unimportant as the backward propagating part of the field in layer 2 vanishes. The
matrices T1,2 and R1,2, however, determine the remaining the expansion coefficients via:

B
{1}
k =

N∑
j=1

R1,2;k,jA
{1}
j exp

(
iβ
{1}
j (z1,2 − z0,1)

)
, (3.17a)

A
{2}
k =

N∑
j=1

T1,2;k,jA
{1}
j exp

(
iβ
{1}
j (z1,2 − z0,1)

)
, (3.17b)

where the subscript k, j indicates the element in the kth row and in the jth column. Since
all A{1}j are given by Eq. (3.16a), the task is to determine the elements in T1,2 and R1,2.
When these are known, Eqs. (3.17) give the remaining expansion coefficients, B{1}k and
A
{2}
k , and by the expressions in Eqs. (3.15) the electric field is determined on both sides

of the interface.
To determine the elements in the matrices, the BCs along z must be applied, and

these are:

E1(x, z1,2) = E2(x, z1,2), (3.18a)

∂E1(x, z)
∂z

∣∣∣∣∣
z=z1,2

= ∂E2(x, z)
∂z

∣∣∣∣∣
z=z1,2

. (3.18b)
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Using the BCs and the orthonormality properties of the eigenmodes (Eq. (3.9)), the
following equations in T1,2 and R1,2 may be obtained:

Ĩ + ĨRT
1,2 = 〈e{2}

x |e
{1}
x 〉pT

T
1,2, (3.19a)

β̃
{1} − β̃{1}RT

1,2 = 〈e{2}
x |e

{1}
x 〉pβ

{2}TT
1,2. (3.19b)

where the following definitions have been applied:

Ĩ =


β
{1}
1 /|β{1}1 | 0 . . . 0

0 β
{1}
2 /|β{1}2 | . . . 0

...
. . . . . .

...
0 0 . . . β

{1}
N /|β{1}N |

 , (3.20a)

〈e{2}
x |e

{1}
x 〉p =


〈e{2}x,1 |e

{1}
x,1 〉p 〈e{2}x,2 |e

{1}
x,1 〉p . . . 〈e{2}x,N |e

{1}
x,1 〉p

〈e{2}x,1 |e
{1}
x,2 〉p 〈e{2}x,2 |e

{1}
x,2 〉p . . . 〈e{2}x,N |e

{1}
2,x 〉p

...
...

. . .
...

〈e{2}x,1 |e
{1}
x,N 〉p 〈e{2}x,2 |e

{1}
x,N 〉p . . . 〈e{2}x,N |e

{1}
x,N 〉p

 , (3.20b)

β{p} =


β
{p}
1 0 . . . 0
0 β

{p}
2 . . . 0

...
. . . . . .

...
0 0 . . . β

{p}
N

 , p = 1, 2, (3.20c)

β̃
{1} = β{1}Ĩ. (3.20d)

Simple manipulations of Eqs. (3.19) give the following equations that allow explicit
determination of TT

1,2 and RT
1,2:

2β̃{1} =
(
〈e{2}

x,j |e
{1}
x,j 〉pβ

{2} + β̃{1}Ĩ−1〈e{2}
x,j |e

{1}
x,j 〉p

)
TT

1,2, (3.21a)

RT
1,2 = Ĩ−1 (〈e{2}

x,j |e
{1}
x,j 〉pT

T
1,2 − Ĩ

)
. (3.21b)

Eq. (3.21a) is a linear matrix equation that can be solved for TT
1,2, whereupon RT

1,2 is
given directly by Eq. (3.21b).

From Eqs. (3.21), it is seen that the reflections and transmissions at an interface
essentially depend on the overlap integral between the eigenmodes of each layer. As
previously mentioned, the electric field in both layers is determined from R1,2 and T1,2,
and Eqs. (3.21) thus allow computation of the electric field across two layers. Expressions
for the reflection and transmission matrices R2,1 and T2,1 are given by cyclic permutations
of indices in Eqs. (3.21).

It should be mentioned that transfer and reflection matrices can be extended to any
general interface, q, by simply substituting {1}y {q} and {2}y {q + 1}. Furthermore,
at a general interface, all four reflection and transmission matrices must be considered
which is discussed in the following section.

Three-Layer Structure

When considering a structure with three layers, such as the geometry in Fig. 3.9(a), the
formalism just introduced will not suffice on its own. As illustrated in Fig. 3.9(b), the
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field in the second layer consists of back- and forward propagating fields, resulting from
the multiple reflections of the field at interfaces z1,2 and z2,3. A three layer formalism
must account for these multiple reflections.

x

z

0 Lx

{1}

{2}

{3}

z0,1

z1,2

z2,3

z3,4

(a) Three-layer structure.
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SR1,3

SR3,1

ST1,3

ST3,1

{1} {2} {3}

z0,1 z1,2 z2,3 z3,4

(b) The various reflections and transmissions in a three-layer structure.
The illustration introduces the scattering reflection matrices, SR, and the
scattering transmission matrices, ST.

Figure 3.9

For instance, the total reflection at interface z1,2 must take into account both the
initial reflection of an incoming wave, described by R1,2, and the contribution from the
transmission of the left-propagating reflections in layer 2. This total or effective reflection
matrix is denoted as the scattering reflection matrix, SR1,3, because it takes into account
the structural setup from layer 1 to 3. Similarly, the scattering transmission matrices
ST1,3 and ST3,1, illustrated in Fig. 3.9(b), describe transmissions that take into account
the setup from layer 1 to 3. Maintaining the form of the electric field in Eqs. (3.15), the
definitions of the scattering matrices, SR1,3 and ST1,3, are:

B
{1}
k =

N∑
j=1

SR1,3;k,jA
{1}
j exp

(
iβ
{1}
j (z1,2 − z0,1)

)
, (3.22a)

A
{3}
k =

N∑
j=1

ST1,3;k,jA
{1}
j exp

(
iβ
{1}
j (z1,2 − z0,1)

)
, (3.22b)
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where subscript k, j indicates the matrix element in the kth row and in the jth column. The
reversed scattering matrices, SR3,1 and ST3,1 have similar definitions, that incorporate
the reversed propagation direction.

By imposing the z-BCs, the scattering matrices, SR1,3 and ST1,3, may be expressed in
terms of the previously introduced reflection and transmission matrices. The derivations
are carried out in Appendix C.3, and the resulting expressions are:

SR1,3 = R1,2 + T2,1P2R2,3P2 (I−R2,1P2R2,3P2)−1 T1,2, (3.23a)
ST1,3 = T2,3P2 (I−R2,1P2R2,3P2)−1 T1,2, (3.23b)

where P2 is a propagation matrix, introduced to handle the phase-change related to
the propagation of a wave. The propagation matrix is a diagonal matrix, and has the
following elements in a general layer q:

Pq;j,k = δjk exp
(
iβ
{q}
j (zq+1,q − zq,q−1)

)
. (3.24)

Expressions for SR3,1 and ST3,1 can be found in Appendix C.3.
The field coefficients in layer 2 can be expressed explicitly by using the original

reflection and transmission matrices. Letting A{2} and B{2} denote vectors containing
the coefficients A{2}j and B

{2}
j , respectively, for j = 1, 2, . . . , N , the following relations,

that are derived in Appendix C.4, hold:

A{2} = (I−R2,1P2R2,3P2)−1
(
T1,2Ã

{1} + R2,1P2T3,2B̃
{3})

, (3.25a)

B{2} = (I−R2,3P2R2,1P2)−1
(
R2,3P2T1,2Ã

{1} + T3,2B̃
{3})

, (3.25b)

where Ã{1} and B̃{3} denote propagated versions of the corresponding coefficient vectors
A{1} and B{3}, such that the elements of Ã{1} and B̃{3} are:

Ã
{1}
j = A

{1}
j exp

(
iβ
{1}
j (z1,2 − z0,1)

)
, (3.26a)

B̃
{3}
j = B

{3}
j exp

(
iβ
{3}
j (z3,4 − z2,3)

)
, (3.26b)

for j = 1, 2, . . . , N .

Multi-Layer Structure

This section will introduce the final step necessary to describe a general multi-layer
structure with a total of Q ≥ 4 layers. The initial and primary aim is to determine
scattering matrices between the first layer and the last layer. To obtain these matrices,
an iterative scheme whose fundamental idea is summarized below and in Fig. 3.10 is
employed:

1. Compute the transmission and reflection matrices between all layers, such that
Rq,q+1, Rq+1,q, Tq,q+1 and Tq+1,q are obtained ∀q ∈ [1, Q − 1], that is, for all
interfaces.

2. Reduce the multi-layer structure to its first three layers. Compute scattering
matrices SR1,3, SR3,1, ST1,3 and ST3,1 for this system.
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Figure 3.10 Iterative scheme in which scattering matrices to and from the q + 1th layer are
determined. The layers between the first and the qth interface are collapsed such that a reduced
three-layer structure can be considered. Any layer after the q + 1th layer is ignored.

3. Consider the fourth layer. By using the previously computed scattering matrices as
a starting point for an iteration, and by following the idea outlined in Fig. 3.10, it
is possible to determine the matrices SR1,4, SR4,1, ST1,4 and ST4,1.

4. Repeat step 3 by once again reducing the system to a three-layer system. Continuing
in this manner, the scattering matrices SR1,q, SRq,1, ST1,q and STq,1 can be
obtained for q + 1 = 4 to q + 1 = Q.

The final iteration determines the reflection and transmission through the entire multi-
layer structure, that is, the scattering matrices SR1,Q, SRQ,1, ST1,Q and STQ,1 are
determined. The expressions needed to compute the q + 1th scattering matrices are
derived in Appendix C.4 and given below:

SR1,q+1 = SR1,q + STq,1PqRq,q+1Pq (I− SRq,1PqRq,q+1Pq)−1 ST1,q, (3.27a)
SRq+1,1 = Rq+1,q + Tq,q+1PqSRq,1Pq (I−Rq,q+1PqSRq,1Pq)−1 Tq+1,q, (3.27b)
ST1,q+1 = Tq,q+1Pq (I− SRq,1PqRq,1+1Pq)−1 ST1,q, (3.27c)
STq+1,1 = STq,1Pq (I−Rq,q+1PqSRq,1Pq)−1 Tq+1,q. (3.27d)

At this point, when comparing the above expressions with those for the scattering
matrices SR1,3, SR3,1, ST1,3 and ST3,1 (Eqs. (3.23) and Eqs. (C.16) in Appendix C.3),
it is seen that step 2 can be included in step 3 in the iterative scheme. One must then
use the starting point of the pseudo-scattering matrices SR1,2 ≡ R1,2, SR2,1 ≡ R2,1,
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ST1,2 ≡ T1,2 and ST2,1 ≡ T2,1. The derivations of Eqs. (3.27) follow the same procedure
as the derivations of the scattering matrices of a three-layer system, see Appendix C.4,
with the exception that the reflection and transmission matrices of the collapsed layers
are scattering matrices.

In order to obtain the full field profile in all layers, it is necessary to express the field
coefficients A{q} and B{q} for q = 1, 2, . . . , Q. The coefficients for the outer layers, that
is, q = 1 and q = N , are given directly from the knowledge of the scattering matrices
from layer 1 to Q. The remaining coefficients for the inner layers (q = 2, 3, . . . , Q − 1)
can be determined from the intermediate scattering matrices via:

A{q} = (I− SRq,1PqSRq,QPq)−1
(
ST1,qÃ

{1} + SRq,1PqSTQ,qB̃
{Q})

, (3.28a)

B{q} = (I− SRq,QPqSR1,qPq)−1
(
SRq,QPqST1,qÃ

{1} + STQ,qB̃
{Q})

, (3.28b)

where Ã{1} and B̃{Q} denote propagated versions of the corresponding coefficient vectors,
A{1} and B{Q}, in a manner similar to that indicated in Eqs. (3.26). The derivation
of these formulae can be seen in Appendix C.5. Observing the expressions for the field
coefficients, it is apparent that a second iterative scheme must be employed to compute
the scattering matrices from the last layer, Q, and inwards to q − 1. The scheme is
essentially identical to that described on p. 23, and the expressions for SRq−1,Q, SRQ,q−1,
STq−1,Q and STQ,q−1 can be seen in Appendix C.6.

In Sections 3.2-3.6, the formalism that determines the eigenmodes from the x-BCs,
expands the entire 2D-field on these eigenmodes and couples the fields in different layers
has been established. The sum of these efforts allows determination of the field profiles in
a variety of geometries, including Bragg-gratings and micro-cavities, that are presented
and discussed in the following section.

3.7 Field Profiles

Implementing the theory of the preceding sections in matlab allows determination of
the field profile of any multi-layered structure. A general implementation requires some
care and consideration, but yields a powerful tool that allows calculation of the electric
field in a wide variety of structures in a closed geometry. This section demonstrates the
functionality of such a general implementation by presenting a range of field profiles for
different and increasingly complex structures.

The field profile of a certain geometry depends critically on the choice of incident fields
at the first and the last z-interface. To display the field profiles, it is hence required to fix
these initial conditions. For convenience, it is chosen that the first layer is illuminated
by the fundamental mode of that layer. Other and more advanced initial condition
are also possible: For instance, the illuminating wave could be a square wave along x.
Constructing such a square wave can be achieved by expanding the square wave on the
set of eigenmodes of the first layer, in a manner similar to that applied in Fourier series.

The field E(x, z) represents a surface in a three dimensional space. It is beneficial to
present such fields as two dimensional color-plots where the value of E(x, z) is plotted
on a color-scale. This allows for a precise and less cluttered representation of the fields,
compared to a surface-plot. The arbitrary color-scale employed for the field plots is
illustrated below:

  

Minimum Zero Maximum



26 CHAPTER 3. CLOSED GEOMETRY

The values of the field are of no significance as these values scale with the normalization,
and therefore only the relationship between values are of interest.

The structures to be studied are chosen as structures with refractive indices in the
range 1 ≤ n(x) ≤ 2, where it is noted that the numerical implementation is able to handle
higher refractive indices. For illustrations of the refractive index profile, the following
discrete gray color-scale is employed:

1 1.5 2

Finally, all field profiles in this section are computed with the inclusion of N = 100
eigenmodes as it is estimated that the field plots converge acceptably at this number of
eigenmodes. Increasing the number of eigenmodes results in increased computing time,
but minuscule changes in the field profiles.

The first subsection considers simple structures with few layers and simple x-variations.
The second subsection considers an example of a multi-layered structure, specifically
a Bragg grating, and briefly discusses how the step-index profiles can be applied to
approximate oblique index profiles by use of a staircase approximation.

Simple structures

The first and most basic structure is that of a waveguide in a single layer. The index
profile for the structure is illustrated in Fig. 3.11(a). No z-interfaces are present, and as
a consequence a plot of the electric field, displayed in Fig. 3.11(b), shows nothing but the
undisturbed fundamental mode propagating along a uniform waveguide, as dictated by
its harmonic z-dependence.
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(a) Refractive index profile.
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(b) Field Profile.

Figure 3.11 Electric field in waveguide: The waveguide is placed in vacuum, and the refractive
index of the core is n = 2. The width of the core is Dg = 2µm, and the width of the closed
geometry is Lx = 10µm.

An abruptly terminated waveguide can be considered by introducing a single z-interface.
An example of such an abruptly terminated waveguide is displayed in Fig. 3.12(a), and the
resulting field is shown in Fig. 3.12(b). The plot clearly displays a spreading of the guided
mode upon exiting the waveguide into vacuum which is as expected. However, interference
effects are also observed, contrary to what would be expected for such a structure. This
effect is a direct consequence of the closed geometry approach: The x-boundaries of the
closed geometry act as perfectly conducting walls that reflect the light light. Several
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distinct interference patterns are observed in Fig. 3.12(b). This undesirable effect, referred
to as parasitic reflections, is a fundamental limitation of the closed geometry approach.
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(b) Field Profile.

Figure 3.12 Electric field in an abruptly terminated waveguide: The waveguide is placed in
vacuum and emits light into vacuum. The refractive index of the core is n = 2. The width of the
core is Dg = 2µm and Lx = 10µm.

The impact from the parasitic reflections scales directly with the size of the closed
geometry, Lx. Figs. 3.13 display the results of two calculations of the electric field, both
with refractive index profiles as in Fig. 3.12(a) and with a core width of Dg = 2µm, but
with different values of Lx. The field profile in Fig. 3.13(a), with Lx = 5µm, is almost
entirely dominated by the effects of parasitic reflections. Increasing the value of Lx to
20µm, Fig. 3.13(b), results in a significant reduction of the effects in the observed z-range.
From these results, it is reasonable to assume that the closed geometry would emulate
an open geometry without x-boundaries for large values of Lx. Strictly, the effects of
parasitic reflections remain when Lx is increased, but the region in which they dominate
is displaced along the z-axis such that interference effects are not significant until at
large z-values. Also, it should be noted that in the vicinity of the x-boundaries the
parasitic reflections remain, but the relative impact from this throughout the structure
has diminished.
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(b) Lx = 20µm.

Figure 3.13 Parasitic effects in an abruptly terminated waveguide. Both field plots represent
abruptly terminated waveguides, similar to that in Fig. 3.12(a), but with different values of Lx.
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Multi-layered structures

The multi-layer formalism is ideal for handling computations on constructions such as
Bragg gratings in which multiple layers of alternating refractive index, n1 and n2, are
positioned in succession. Such structures can exhibit high reflection for specific wavelengths.
The optical path distance in each layer is defined as δ1 = n1d1 and δ2 = n2d2 where
d1 and d2 denote the z-length of each layer. Designing the structure such that δ1 and
δ2 both equal λ/4 yields a highly reflective grating [Pedrotti, Chapter 22-2]. Such an
engineered structure is displayed in Fig. 3.14(a).
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(b) Field Profile.

Figure 3.14 Electric field in a fiber in which a Bragg grating with the refractive indices n1 = 1.5
and n2 = 2 is inscribed. The thickness of each layer is determined such that δ1 = δ2 = λ/4 which
yields d1 = 0.258µm and d2 = 0.194µm. The width of the fiber is set to Dg = 3µm. A total of
52 layers is included.

The field profile of the structure is shown in Fig. 3.14(b). That the structure is highly
reflective is apparent from the strong attenuation of the field across the initial layers. As
an example of the uses of Bragg gratings, micropillar cavities can be mentioned. Such
cavities employ Bragg gratings as highly reflective and thin cavity mirrors. To illustrate
that the reflective effect of a Bragg grating is strongly dependent on the wavelength, the
structure in Fig. 3.14(a) is illuminated by the fundamental mode with a wavelength of
λ = 1.10µm, differing from the previously used λ = 1.55µm. The resulting field profile is
displayed in Fig. 3.15. The change in the profile, as compared to that in Fig. 3.14(b), is
obvious as no attenuation of the field is visible.
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Figure 3.15 Field profile. Wavelength-dependence in Bragg gratings: Illumination of the Bragg
grating, illustrated in Fig. 3.14(a), with the fundamental mode and with λ = 1.10µm. No
attenuation is observed, in contrast to the results in Fig. 3.14(b).
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Finally, simulation of oblique interface boundaries is discussed. Since the developed
formalism can only handle square zones and layers, a staircase approximation can be
used to simulate structures with oblique interfaces. As an example, the oblique interface
between the core and vacuum of a narrowing fiber can be well approximated by dividing the
oblique interface into a series of square staircase steps. The quality of the approximation
is improved by increasing the number of staircase steps. An example of such a simulation
is not shown as it is outside the focus of this report, but the description of the staircase
approximation illustrates the versatility of the formalism.

3.8 Spontaneous Emission Rate

The spontaneous emission rate (SER), γ, is the rate of spontaneous emissions in a two-level
system, such as a quantum emitter. Further discussion of the SER and the two-level
system is out of the scope of this report, but instead reference is made to [Pedrotti,
Chapter 6] and [Novotny, Chapter 8.4]. However, to obtain a quantitative measure that
allows comparison of the closed and open geometry approaches, the SER will implicitly
be determined through a calculation of the normalized SER, defined in the following.

The normalized SER, α, is defined as the the SER, γ, of some material in some
structure relative to the SER in a uniform structure of the same material, γ0:

α ≡ γ

γ0
. (3.29)

In words, α measures how much the SER has been increased or decreased for a given
environment, relative to the SER in the bulk material. The normalized SER is inter-
changeable with the Purcell enhancement factor, used in the studies of microcavities
[Purcell]. It can be shown that α is also given as the ratio of the power emitted from
a current source in the optical environment, P , and the power emitted from the same
current source in a uniform material, P0 [Novotny, Eq. (8.138)]:

α = P

P0
. (3.30)

Hence, rather than calculating the SER, γ, and its corresponding reference value, γ0, the
power, P , and its reference value, P0, may equally well be used to obtain α. Therefore,
in the following sections the power resulting from a current source inside the structure is
derived. The reference power, P0, is that of a uniform material in an open geometry. The
value is derived in Section 4.6, and the result in arbitrary units is:

P0 = 1
8 . (3.31)

It is noted that the reference power is independent of the choice of refractive index in the
bulk material.

Modeling
The power radiated from a current source with harmonic time-dependence is given by
[Novotny, Eq. (8.73)]:

P ≡ −1
2

∫
V

Re(J(r)∗ ·E(r)) dΩ, (3.32)
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where J(r) is the current density of an arbitrary current source, E(r) is the electric
field resulting from this current source, and the integral is taken over a volume, V , that
bounds the current source. For both the closed and open geometries, the current source
is assumed harmonic in time and chosen as a dipole that can be modeled as a Dirac delta
function positioned in the point (x, z) = (xc, 0), pointing along the y-direction and with
magnitude J0:

J(r) = J0δ(z)δ(x− xc) ŷ. (3.33)

For simplicity, the magnitude of the dipole is chosen as J0 = 1 A/m2, and to maintain
a simple notation the units are omitted in the following. Using this and assuming that
the electric field due to the dipole is polarized along the y-direction, E = E(x, z) ŷ, the
expression for the power reduces to:

P = −1
2

∫
V

Re(δ(z)δ(x− xc)E(x, z)) dΩ = −1
2Re(E(xc, 0)). (3.34)

Hence, the power is directly determined by computing the strength of the electric field in
the point of the dipole. Consequently, to determine the power the electric field generated
by the current source must first be evaluated.

Power in Single Layer Geometry

In this section, the electric field generated by the dipole current in a uniform layer will
be derived, and the appertaining power will be expressed from this. The geometry is
schematically illustrated in an xz-plane in Fig. 3.16. The current source, J, is positioned
at z = 0 pointing along the y-axis, and the volume that bounds the current source, V , is
illustrated by the horizontal, dashed lines. Since the current source is modeled as a dipole
of infinitesimal extent, this volume tends to zero which is not justified by the schematic
representation. The parts of the field that propagate along the positive and negative
z-directions, respectively, are indicated by the blue arrows.

x
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0 Lx

J

E(x, z), z ≥ 0

E(x, z), z < 0

V

Figure 3.16 Schematic representation of dipole current, J, in uniform layer. The volume that
bounds the current source, V , and the parts of the electric field that propagate along the positive
and negative z-directions, respectively, are indicated.

As discussed in Section 3.5, the electric field, E(x, z), can be expanded on the
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eigenmodes ex,j(x) and exp(±iβjz) as follows:

E(x, z) =
{∑∞

j=1Ajex,j(x) exp(iβjz), z ≥ 0,∑∞
j=1Ajex,j(x) exp(−iβjz), z < 0.

(3.35)

Since the source of the electric field is placed in z = 0, the field for z ≥ 0 and z < 0
may only have z-dependent contributions that propagate along the positive and negative
z-directions, respectively, as there are no interfaces to reflect the field. The electric field is
determined once the modal amplitudes, Aj , are obtained, and by the result in Eq. (3.34)
this yields the emitted power. Qualitatively, any value of Aj is given as the projection of
the jth eigenmode, ex,j , on the current density, J. The modal amplitudes are given as
[Snyder, Eq. (31-35c)]:

Aj = − 1
4N ′j

∫
V
ej(x)∗ · J(r) exp(−iβjz) dΩ, (3.36)

where ej = ex,j ŷ, and where the integral is taken over the volume, V, that bounds the
dot product of the (vectorial) eigenmode, ej , and the current source, J. The expression
in Eq. (3.36) is valid when the eigenmodes satisfy the orthonormality relation in Eq. (3.9)
which accounts for the use of the Power inner product. Also, it must be noted that at
this point the eigenmodes are assumed normalized which by Eq. (3.8) gives N ′j = β∗j /|βj |.
Given the dipole nature of the current source in Eq. (3.33), the modal amplitudes are
evaluated as:

Aj = −|βj |4β∗j
ex,j(xc)∗. (3.37)

Introducing these coefficients in Eq. (3.35), the fields on either side of the dipole position
at z = 0 become:

E(x, z) = −
∞∑
j=1

|βj |
4β∗j

ex,j(xc)∗ex,j(x)
{

exp(iβjz), z ≥ 0,
exp(−iβjz), z < 0.

(3.38)

Having expressed the field resulting from the dipole current, the power can be written
out explicitly by use of Eq. (3.34):

P = 1
8

∞∑
j=1
|ex,j(xc)|2 Re

(
|βj |
β∗j

)
. (3.39)

When β2
j < 0, the term Re

(
|βj |/β∗j

)
equals zero, and therefore the infinite sum reduces to

a finite sum over the eigenmodes with real βj-values. This means that only propagating
waves contribute to the emitted power, and with no approximation the sum can be
truncated to yield:

P = 1
8

M∑
j=1
|ex,j(xc)|2, (3.40)

where M denotes the last eigenmode with a real z-propagation constant, such that β2
M > 0

and β2
M+1 < 0.
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Power in Three-Layer Geometry

In this section, the dipole is assumed positioned in a layer that is surrounded by two
arbitrary layers. The resulting field must then comprise contributions from the multiple
reflections of the field that take place at the layer interfaces between the center layer and
the surrounding layers. The setup is schematically illustrated in an xz-plane in Fig. 3.17.
The layer containing the dipole is not depicted as any specific layer because the following
derivations hold for an arbitrary dipole layer as well as arbitrary surrounding layers.

The derivations in this section are inspired by the outline in [Bienstman, Chapter 7].

x

z

0

Lz
2

−Lz2 {1}

{2}

{3}

J

0 Lxxc

R2,3

R2,1

E↑ E↓

Figure 3.17 Schematic representation of a dipole current, J, in a layer that is surrounded by
two arbitrary layers. At the respective z-boundaries the reflection matrices are R2,1 and R2,3,
and the parts of the field that propagate along the positive and negative z-direction, E↑ and E↓,
respectively, are represented by the blue arrows.

By the general result in Eq. (3.34), the field must be determined as a function of x in
z = 0. As in the case of a uniform layer, the dipole initially generates contributions to
the field that propagate along the positive and negative z-direction, respectively. At the
interfaces each of these contributions are partially transmitted and partially reflected,
and the parts that are reflected return to the z = 0 plane and contribute to the total field.
Next, they propagate to the opposite interfaces, are partially transmitted and partially
reflected, and the reflected parts again contribute to the total field. These reflections, in
principle, continue indefinitely. Terming the parts of the field that propagate along the
positive and negative z-direction, at z = 0, E↑(x, 0) and E↓(x, 0), respectively, the total
field, E(x, 0), is:

E(x, 0) = E↑(x, 0) + E↓(x, 0). (3.41)

The contributions to E↑ and E↓, respectively, are the sums of the contributions from each
of the modes, and using the property of uniform convergence from Eq. (3.14) the infinite
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series are truncated at N , the number of modes included in the numerical computations:

E↑(x, 0) =
∞∑
j=1

ε↑jex,j(x) '
N∑
j=1

ε↑jex,j(x), (3.42a)

E↓(x, 0) =
∞∑
j=1

ε↓jex,j(x) '
N∑
j=1

ε↓jex,j(x). (3.42b)

This truncation allows representation of the contribution coefficients as vectors via:
ε↑ = [ε↑1 ε

↑
2 . . . ε

↑
N ]T and ε↓ = [ε↓1 ε

↓
2 . . . ε

↓
N ]T . These are termed contribution vectors and

are determined in Appendix C.7. To keep a simple notation, the approximate equality
signs in Eqs. (3.42) are replaced by equality signs in the following.

Applying the definitions in Eqs. (3.41) and (3.42), allows representation of the field at
z = 0 in the following manner:

E(x, 0) =
N∑
j=1

(ε↑j + ε↓j )ex,j(x). (3.43)

Before writing down the final expression, the sum of ε↑ and ε↓ is expressed from the
results in Appendix C.7, Eqs. (C.24) and (C.25):

ε↑ + ε↓ = (I−RbotRtop)−1(I + Rbot)A+ (I−RtopRbot)−1Rtop(I + Rbot)A
=
[
(I−RbotRtop)−1 + (I−RtopRbot)−1Rtop

]
(I + Rbot)A

≡ SA. (3.44)

where A = [A1,A2, . . . ,AN ]T , with Aj given as in Eq. (3.37), and the matrices Rtop and
Rbot, which handle the effects of propagation to and reflection from the top and bottom
interfaces, respectively, are given in Eqs. (C.21). The matrix S, introduced to ensure a
concise and brief notation, describes the action of the surrounding layers on the field in
the center layer.

Combining Eqs. (3.43) and (3.44) finally gives the field:

E(x, 0) =
N∑
k=1

N∑
j=1

Sk,jAjex,j , (3.45)

where Sk,j is the element in the kth row and jth column of the matrix S. Having expressed
the field in the z = 0 plane, the emitted power may be expressed by using the result in
Eq. (3.34) and the expression for the modal amplitudes, Aj , in Eq. (3.37):

P = 1
8

N∑
k=1

N∑
j=1
|ex,j(xc)|2Re

(
Sk,j
|βj |
β∗j

)
. (3.46)

Contrary to the result for the single-layer geometry, evanescent modes may now contribute
to the emitted power through the action of the elements of the matrix S. This is a
consequence of the introduction of interfaces that allow an emitted evanescent mode
to couple to propagating modes at the interface, and thus to contribute to the total
emitted power. Due to this, all modes must in principle be included in the calculation
of P . Consequently, it is not obvious how the number of modes, N , must be chosen to
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ensure a specific and small truncation error. Hence, before computing the power ratios in
the three-layer geometries, convergence studies that determine the number of modes to
include are carried out, see Appendix C.8.

The expression for the power can easily be generalized to the case where the dipole
layer is surrounded by multiple layers on both sides. This can be done by replacing the
reflection matrices by the scattering matrices, SR, that were introduced in Section 3.6.
Fundamentally, these scattering matrices describe the amount of reflection from all of the
layers above and below the dipole layer, respectively, and the transitions from the reflection
matrices to the scattering matrices in the derivations are therefore straightforward.

Computational Results
Using the expressions derived in the preceding sections, the power will be determined for
different single-layer and three-layer geometries. In all cases, the power is computed for
different values of the width of the geometry along the x-direction, Lx, and the range of
values for this parameter will be:

Lx ∈ [6.00µm, 6.05µm, 6.10µm, . . . , 30.0µm]. (3.47)

Having chosen the values in Eq. (3.47), a total of 481 data points will be obtained for each
geometry. The range in Eq. (3.47) could be extended, but since larger values of Lx require
inclusion of more modes, this increases the computation time. Obviously, in this 2D-
problem additional modes could be included at no unreasonable increase in computation
time. However, investigations of more realistic and complicated structures that require a
full 3D-treatment would likely suffer an unacceptable increase in computation time, in
order to attain acceptably convergent results. Thus, to evaluate the convergence speed in
a range of Lx-values viable for realistic structures, a maximum value of Lx = 30µm is
chosen. At this width, the normalized SER should have converged acceptably to deem
the procedure successful.

Single-Layer Geometry
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(b) Symmetric waveguide layer.

Figure 3.18 Dipole current, J, in single-layer, closed geometries for which the power ratio, α, is
calculated as function of the width of the layer, Lx.

The power is in this section calculated for geometries where the dipole is situated
in geometries with uniformity along z, that is, in single-layers. Specifically, a uniform
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vacuum layer and a symmetric waveguide layer will be investigated. Obviously, in the
vacuum layer the refractive index is everywhere n = n0 = 1, and therefore the only
variable parameter in describing this system is the width of the layer, Lx. In the guide
layer, a guide region of fixed width, Dg = 2µm, is positioned symmetrically between two
vacuum regions, the cladding regions, each of width Dv = (Lx −Dg)/2. The refractive
index in the core of the waveguide is chosen as ng = 2. Finally, the dipole is placed in the
middle of the core, xc = Lx/2. The vacuum layer and the waveguide layer geometries are
illustrated in Figs. 3.18(a) and 3.18(b), respectively. The thick, vertical lines indicate the
outer x-boundaries, whereas the thin, vertical lines indicate the separation of different
regions. The horizontal dashed lines indicate the z-boundaries that are of no significance
in the case of a single-layer, but included for consistency.
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Figure 3.19 Power ratio, α = P/P0, as function of the width of the geometry along x, Lx, for
closed, single-layer geometries.

Fig. 3.19(a) displays the power ratio, α = P/P0, for a vacuum layer of width Lx. The
ratio ranges approximately from 0.7 to 2.5, but the density of data points in the range
from α ≈ 0.7 to α ≈ 1.2 is much larger than for higher values of α. Estimating an average
value in this range as αav = 0.95, the relative fluctuations of the points are approximately
δα = (1.2− 0.95)/0.95 = 0.26. Generally, the power ratio is periodic with Lx, repeating
itself for approximately every δLx = 1.5µm. However, the largest and the smallest values
in each cycle decreases and increases, respectively, indicating a decrease in the variation
of α as Lx increases.

In Fig. 3.19(b), the power ratio as function of Lx for the symmetric waveguide layer is
shown. Qualitatively, these data points are identical to the vacuum layer results, but the
range of values for α is smaller: approximately from 0.8 to 1.5. The largest density of data
points is found for values of α that are equal to or smaller than unity which differs slightly
from the results for the vacuum layer. Estimating again an average value as αav = 0.90,
the relative fluctuations of the points are approximately δα = (1.0− 0.90)/0.90 = 0.11.
This smaller deviation compared to the vacuum layer can be accounted for by the inclusion
of guided modes in the waveguide layer. As will be discussed in the following paragraph
and in Chapter 4, the fluctuating pattern is largely the result of contributions from
the semi-radiating modes, and thus inclusion of guided modes is expected to diminish
the fluctuations. The repetition length is again approximately δLx = 1.5µm, and the
variation of the power ratio decreases as Lx is increased.

In the following, the oscillating pattern in the SER plots is examined and explained.
Firstly, it is noticed that the repetition length equals the applied wavelength, namely
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Figure 3.20 Plots used in analyzing the (Lx, α)-plots.

δLx ≈ λ, which can be verified by computing the power ratios for a different wavelength.
This has been carried out for the vacuum layer with λ = 1.00µm, and the results
can be seen in Fig. 3.20(a). It is registered that the repetition length, as expected, is
δLx ≈ 1.0µm. That the repetition length is in fact the wavelength can be explained in
terms of the contributing semi-radiating modes. At a specific width, Lx, a number of
semi-radiating modes contributes to the power ratio, c.f. Eq. (3.40), that is, a number
of semi-radiating modes have real z-propagation constants. As the width is increased,
the normalization of the eigenmodes decreases the contribution from each semi-radiating
mode which explains the decrease of α. However, when Lx is increased by one wavelength,
two additional modes, one odd and one even mode, are included in the real βj-range,
and thus two additional semi-radiating modes are included in the sum in Eq. (3.40). The
contribution from each mode is proportional to the absolute square of the mode evaluated
in the point where the dipole is positioned. Since the dipole is situated exactly in the
middle of the layer, the odd modes consequently do not contribute, and this explains
why the periodic increases of α occur once for every wavelength: Inclusion of additional
even modes increases the power ratio while inclusion of additional odd modes does not
contribute. This is illustrated in Fig. 3.20(b) where the power ratio for the vacuum layer
with λ = 1.55µm (blue) and the number of contributing modes (red), normalized so that
the values approximately equal the values of the power ratios (in this case: divided by
10), are plotted. As expected, the number of contributing modes increases twice for every
cycle of the power ratio. Obviously, the guided modes also contribute to α, but their
contribution to the power ratio is roughly independent of Lx.

One way of describing the data points for both of the single layer geometries is as
damped oscillators. However, the damping is small, and the overall picture is that the
power ratios do not converge in any of the geometries due to the critical dependence on
Lx. This consequently illustrates the limitations of the closed geometry.

Three-Layer Geometry

The waveguide layer that was examined in the single layer geometry in the preceding
section is now assumed surrounded by two vacuums layers, and two core refractive indices
are considered, namely ng = 1.1 and ng = 2.0. The thickness of the guide layer, relevant
for the propagation matrix, P, used in the general result in Eq. (3.46), is Lz = 2µm. The
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geometry is illustrated in Fig. 3.21.
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Figure 3.21 Dipole current, J, in three-layer closed geometry for which the power ratio, α, is
calculated as function of the width of the layers, Lx. The refractive index of the core region is
denoted ng.

As earlier discussed, the number of modes to be included must be determined such
that the truncation error for any ng is smaller than a tolerance. A convergence study of
the N -dependence is carried out in Appendix C.8, and the required number of modes to
obtain a deviation of less than 1 permille is estimated as N ≥ 85.
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Figure 3.22 Power ratios, α, as function of width of geometry along x, Lx, for a closed,
three-layer geometry for two values of the refractive index in the core, ng.

In Fig. 3.22(a), the power ratio as function of Lx for ng = 1.1 can be seen. The
results exhibit the same periodicity with the wavelength, δLx ≈ λ, as for the single-layer
geometries. However, the shape of the data points is slightly different, and also more noise
is observed, as compared to the single-layer geometries: More data points fall out of the
general oscillating pattern. The majority of the points have values of α between 0.7 and
1, and the damping of the range of values of α for increasing Lx is observed, but the value
of the power ratio does not converge. Estimating an average value as αav = 0.85, the
relative fluctuations are then approximately δα = (1.0− 0.85)/0.85 = 0.18. For ng = 1.1,
the three-layer geometry is only slightly perturbed compared to the single-layer vacuum
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geometry, and therefore a more clear resemblance between the results in Figs. 3.20(a) and
3.22(a) could have been expected. It should be noted that to focus on the main features
of the data points, the points with α > 1.5 have been ignored since they are considered
as numerical noise.

In Fig. 3.22(b), the power ratios as functions of Lx for ng = 2.0 can be seen. The
periodicity with δLx ≈ λ is observed, but the pattern of the data points differs in a
significant way as compared to the previously obtained results: the power ratio increases
during one cycle and then discontinuously decreases. This is exactly the opposite of what
was observed in Fig. 3.20(b), where the power ratio, due to the normalization, decreased
during one cycle and then increased discontinuously when an even mode was added. The
range of values for α is smaller than what has previously been observed, being for the
largest part in the range from 0.6 to 0.7. Estimating the average value as αav = 0.65, the
relative fluctuations are then approximately δα = (0.7− 0.65)/0.65 = 0.08. This smaller
deviation must again be accounted for by the presence and contributions from guided
modes in the structure. The damping of the range of values for α for increasing Lx is less
pronounced as compared to the previous results, but the power ratio does not converge.
Again, it is noted that a few data points with α > 0.75 have been omitted as they are
considered noise.

As was the case for the single-layer geometries in the previous section, the power
emitted from the dipole in the three-layer geometries does not converge in the examined
Lx range and does not promise convergence at higher values of Lx. This accentuates the
conclusion that the closed geometry approach is critically dependent on the width of the
geometry which exposes the limitations of this method.

3.9 Summary

This chapter has presented a first and relatively simple approach to simulating the electric
field in a slab structure. The main characteristic of this approach is that the geometry is
given a finite width along x outside which the field is forced to vanish. This condition and
the demand for continuity and differentiability of the field in all x inside the geometry
define the x-BCs from which the eigenmodes were determined using the semi-analytical
approach. Having determined the eigenmodes, these were normalized with respect to the
Power inner product which later in the chapter proved to facilitate the calculation of the
power emitted from a dipole situated inside the geometry. The requirement of continuity
and differentiability of the field along z was treated by the scattering matrix formalism.
In brief, this formalism relates the field expansion coefficients, that are used when the
electric field is expanded on the x-dependent eigenmodes, in different layers along z.

With the above implemented in matlab, field profiles can be determined for arbitrary
step-index profiles consisting of multiple layers. To demonstrate this, different geometries
were defined and the corresponding field profiles were presented and discussed. These
field profiles uncovered the first and primary limitation of the closed geometry approach:
Parasitic reflections, caused by the perfectly conducting walls at the outer x-boundaries.
Widening the geometry along x diminished the relative effect from these parasitic reflec-
tions, and this therefore provided the first argument for the open geometry approach,
treated in the following chapters. The open geometry approach is essentially the limiting
case of the closed geometry when the width along x approaches infinity. Despite the
parasitic reflections, plots of the field profiles in the closed geometry provided qualitatively
good representations of the field propagation in the examined geometries.

Finally, the normalized SER was implicitly determined by calculating the corresponding
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normalized power emitted from a dipole in the geometries. The normalized SER provides
a quantitative measure for comparison of the closed and open geometry approaches. In
the closed geometry approach, it was calculated as function of the width of the geometry,
and the results from multiple single- and three-layer geometries all yielded the same
conclusion: The value of the normalized SER was critically dependent on the width of the
geometry. The relative fluctuation of the normalized SER was in the range from 8% to
26%, and hence no reliable values could be obtained with the closed geometry approach.
This and the parasitic reflections in the field profiles proved that another approach that
more precisely models the actual slab structure is needed: The open geometry approach,
treated in the following chapters.





Chapter 4
Open Geometry: Single-Layer

4.1 Introduction

In the preceding chapter, theory and results for the closed geometry approach were
presented, and the results, namely the field profiles and the power ratios as functions of
the width of the geometry, made the limitations of this approach clear. Therefore, in this
and the following chapters the open geometry approach will be discussed and analyzed,
and specifically the results from this approach will be compared with the corresponding
results from the closed geometry approach.

The defining difference between the closed and open geometry approaches is that in
the open geometry approach the geometry is assumed to extend along the entire x-axis,
that is, from x→ −∞ to x→∞, whereas the closed geometry spans only a finite interval
of the x-axis. Thus, in the open geometry approach the solution domain is of infinite
extent. Obviously, this alters the BCs as the field in this approach is nowhere forced
to vanish, and this consequently calls for a new procedure for normalizing the modes.
Furthermore, when the width of the closed geometry tends to infinity, the separation
between the propagation constants of allowed semi-radiating modes approaches zero. The
discrete set of eigenmodes that was found in the closed geometry approach consequently
transforms into a continuum of eigenmodes in the open geometry approach. As will be
seen in the treatment of open waveguide layers, there may in fact exist both a finite
number of discrete modes and a continuum of modes. In the new approach, the entire
field will also be expanded on the eigenmodes, and due to the change in nature of the
eigenmodes this procedure is slightly altered, compared to that in the closed geometry
approach. Finally, the SER is implicitly determined through the power emitted from a
dipole in the open geometry, and the results are compared with the results in the closed
geometry approach.

In this chapter, the open geometry approach is presented in detail for single layers,
specifically for a uniform layer and a waveguide layer. In the following chapter, the
geometry is extended to comprise two layers. Since the open geometry approach introduces
several new concepts, this division into two chapters has been chosen for clarity.

In the previous chapters, the time dependence has been assumed harmonic and on
the form exp(−iωt). In following chapters, another harmonic time dependence, namely
exp(iωt), is assumed, consistent with the convention in [Tigelis]. This change means that
the first term in the expression for the x-eigenmodes in the generic solution in Eq. (2.14a)
now represents a backward propagating wave while the second term represents a forward
propagating wave. For the sake of recognizability, the a field coefficients will still be

41
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related to the forward propagating part of the field while the b field coefficients will
be related to the backward propagating part of the field. This is merely a matter of
convention, and the generic x-dependent part of the field is then given by:

ex(x) = a exp(−iκx) + b exp(iκx), (4.1)

where κ is the propagation constant, and where the field coefficients are assumed to be
chosen such that the mode is normalized. The subscript j has been omitted.

4.2 Eigenmodes

As for the closed geometry, two types of modes, guided modes and radiating modes, may
exist. The guided modes may exist when the geometry comprises a region of higher
refractive index, and the number of guided modes and the corresponding propagation
constants depend on the width of the core region and refractive index contrast between
core and cladding regions. The guided modes are, qualitatively, similar to those obtained
in the closed geometry. However, a significant difference between the two approaches lies
in the treatment of radiation modes that are oscillatory throughout the entire layer. Since
no outer x boundaries are imposed in this approach, see Eqs. (3.2), no discretization, but
rather a continuum of these modes exists.

Since the differences between the two kinds of modes are more pronounced than
in the closed geometry, distinct names for mode types and corresponding propagation
constants are introduced in the following sections. The notation to be introduced follows
the conventions in [Tigelis] and is summarized in Table 1 at the end of this section.

Uniform Layer
A uniform layer of refractive index n is sketched in Fig. 4.1(a) where the dashed lines
represent the z-boundaries, and where the arrows represent the forward and backward
propagating parts of the field, respectively. The corresponding refractive index profile is
shown in Fig. 4.1(b).

x

z

0

n

(a) xz-profile. The forward and backward propa-
gating parts of the field are represented by blue
arrows.

x

z

0

n

(b) Refractive index profile, n(x).

Figure 4.1 Single-layer uniform along x and z.

As earlier discussed and as illustrated by the figures, the geometry has no outer
x-boundaries, thus no outer BCs exist. Since the geometry is uniform along x, no inner
BCs, see Eqs. (3.1), exist either, and hence no BCs exist for the uniform layer in the
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open geometry. Therefore, two unknowns and no BCs exist. The resulting linearly
independent solutions represent illumination from the left and from the right, respectively,
and generally the mode is given as a linear combination of the following waves:

φ1(x, s) = a exp(−isx),
φ2(x, s) = b exp(isx),

(4.2a)
(4.2b)

where s is the x-propagation constant, and a and b are arbitrary amplitudes. Concerning
this propagation constant, the absence of BCs means that no constraints are put on the
allowed propagation constants that therefore form a continuum in the range:

s ∈]0,∞[. (4.3)

If s could be imaginary, the field would in- or decrease exponentially for propagation
along the x-direction, and in the limit |x| → ∞ the mode would diverge which must be
rejected. Therefore, only (positive) real values are considered. This also means that the
x-dependence of the field is purely oscillatory, that is, the modes in any uniform layer are
solely radiation modes.

It should be emphasized that the waves in Eqs. (4.2) are assumed normalized, and
that the field coefficients, a and b, are chosen to satisfy a normalization condition in
Section 4.3. Upon normalization it is found that a = b.

By the definition in Eq. (2.13a), the sum of the square of the x- and z-propagation
constants equals n2k2

0, and the z-propagation constant in the open and uniform layer,
termed γ, is therefore given as function of s in the following way:

γ(s) =
√
n2k2

0 − s2. (4.4)

It is noted that Re(γ(s)) > 0 while Im(γ(s)) < 0. The latter is enforced to ensure that
the electric field is exponentially decreasing along the respective z-propagation directions.

Waveguide Layer

A symmetric waveguide layer is illustrated in Fig. 4.2(a). The refractive index in the core
region −D/2 < x < D/2 is denoted n2, and everywhere else, the cladding region, the
refractive index equals n1, with n1 < n2. Fig. 4.2(b) displays n(x)k0 as function of x for
the same waveguide layer. In general, this geometry supports both guided and radiation
modes. The guided modes have real propagation constants in region 2, and imaginary
propagation constants in regions 1 and 3, while the radiation modes have real propagation
constants in all regions.

Before discussing any further the modes that may exist in this layer, the two different
propagation constants appertaining to the guided and radiation modes are introduced.
For the guided modes, the x-propagation constants are termed h

[p]
j where j refers to the

jth guided mode and where p refers to region p, with p = 1, 2, 3, and h
[1]
j = h

[3]
j ≡ h

[1,3]
j .

The corresponding z-propagation constants for the guided modes, independent of the
zone-position, are termed βj , and as for the closed geometry the x-propagation constants
are implicitly functions of this through:

h
[p]
j =

√
n2

[p]k
2
0 − β2

j . (4.5)
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x

z

−D2
D
2

n2n1 n1

(a) xz-profile. The refractive indices are n1 and
n2, respectively.

x

n(x)k0

−D2
D
2

n2k0

n1k0

[1] [2] [3]

(b) n(x)k0-profile.

Figure 4.2 Waveguide layer uniform along z.

For the radiation modes, the x-propagation constant in the core region is termed ρco,
while in the cladding regions it is termed ρ. ρco is a function of ρ through:

ρco =
√
k2

0(n2
2 − n2

1) + ρ2. (4.6)

The corresponding z-propagation constant which is a function of ρ is defined as:

β2(ρ) = n2
1k

2
0 − ρ2, (4.7)

where, similar to γ(s), the z-propagation constant has Re(β(ρ)) > 0 and Im(β(ρ)) < 0.
The x-propagation constants in regions 1 and 3 are imaginary (h[1,3]

j ) when n2
1k

2
0 < β2

j

and real (ρ) when n2
1k

2
0 > β2(ρ). That is:

Guided modes: n2
1k

2
0 < β2

j < n2
2k

2
0,

Radiation modes: −∞ < β2(ρ) < n2
1k

2
0.

Guided Modes

In principle, the guide mode propagation constants are determined using the same
procedure as in the closed geometry. At the boundaries between zones of different
refractive indices, it is demanded that the mode, Uj(x), is continuous and differentiable
which for the the waveguide geometry in Fig. 4.2 reads:

U
[p]
j (Lp,p+1) = U

[p+1]
j (Lp,p+1), (4.8a)

dU [p]
j

dx

∣∣∣∣∣
x=Lp,p+1

=
dU [p+1]

j

dx

∣∣∣∣∣
x=Lp,p+1

, (4.8b)

where p = 1, 2, L1,2 ≡ −D/2 and L2,3 ≡ D/2. However, Eqs. (4.8) yield only four linearly
independent equations in βj and the six field field coefficients that are generally needed
to express the guide modes in three different regions. Therefore, further equations or
a reduction in the number of unknowns is needed, and the latter can be achieved from
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the following arguments: In regions 1 and 3, the field must be exponentially decreasing
for |x| → ∞. From the fact that h[1,3]

j ∈ I with Im(h[1,3]
j ) ∈ R+, the second term in the

generic solution in Eq. (4.1) diverges for x→ −∞, and the first term diverges for x→∞.
Since this would lead to unphysical modes, the corresponding field coefficients, namely
b
[1]
j and a

[3]
j , must equal zero. Defining the fields relative to the correct boundaries, the

jth guided mode is then given by the following piecewise definition:

Uj(x) =



a
[1]
j exp

(
−ih[1]

j

(
x+ D

2
))
, −∞ < x ≤ −D2 ,

a
[2]
j exp

(
−ih[2]

j

(
x− D

2
))

+ b
[2]
j exp

(
ih

[2]
j

(
x+ D

2
))
, −D2 ≤ x ≤

D
2 ,

b
[3]
j exp

(
ih

[3]
j

(
x− D

2
))
, D

2 ≤ x <∞,

(4.9)

where the field coefficients are chosen such that the mode is normalized. The details of
this normalization are given in Section 4.3.

Combining Eqs. (4.8) and (4.9) yields a matrix equation Ajcj = 0 where Aj is a
4× 4-matrix, given in Appendix D.1, and where cj = [a[1]

j a
[2]
j b

[2]
j b

[3]
j ]T . Using the same

procedure as in Section 3.2, the matrix equation is solved for the values of βj for which
Det(Aj) = 0. Through this, the discrete values of βj and the appertaining four field
coefficients are determined, which concludes the determination of the guided modes.

The number of guided modes is critically dependent on the refractive index contrast,
∆n ≡ n2−n1, and the width of the core region, D. Increasing either ∆n or D potentially
allows a waveguide to support additional guided modes.

Radiation Modes

For values of the z-propagation constant, β(ρ), that are smaller than n1k0, a continuum of
allowed x-propagation constants, ρ and ρco, exist. For the radiation modes, the mode is in
all zones oscillatory, and they may then, as for the uniform layer, without any numerical
problems, be defined relative to x = 0. Since no parts of the mode are exponentially in-
or decreasing, none of the field coefficients can immediately be set equal to zero, and as
the point of departure the radiation mode is defined as follows:

erad(x, ρ) =



a[1] exp(−iρx) + b[1] exp(iρx), −∞ < x ≤ −D2 ,

a[2] exp(−iρcox) + b[2] exp(iρcox), −D2 ≤ x ≤
D
2 ,

a[3] exp(−iρx) + b[3] exp(iρx), D
2 ≤ x <∞,

(4.10)

where again it is assumed that the field coefficients are chosen to normalize the radiation
mode. The field coefficients are functions of the x-propagation constant, ρ, but to maintain
a simple notation this dependence is not given explicitly in the above definition, and is
generally suppressed.

Applying again the demands of continuity and differentiability at x = −D/2 and
x = D/2 gives the matrix equation:

A(ρ)c(ρ) = 0, (4.11)
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Layer Guided Modes Radiation Modes
x-Mode x-PC z-PC x-Mode x-PC z-PC

Uniform (none) φl(x, s) s γ(s)

Waveguide Uj(x) h
[1,3]
j , h

[2]
j βj ψm(x, ρ) ρ, ρco β(ρ)

Table 1 Summary of the guided modes and radiation modes that have been defined and discussed
in Section 4.2. For the uniform and waveguide layers, both in an open geometry, the x-dependent
eigenmodes and the corresponding x- and z-propagation constants (PC) are given.

where A(ρ) is a 4×6-matrix, defined in Appendix D.1, and c(ρ) = [a[1] b[1] a[2] b[2] a[3] b[3]]T .
The matrix equation in Eq. (4.11) can be solved for any ρ > 0, and therefore the

propagation constant is, contrary to the closed geometry approach and the approach
for determining the guided modes in the open geometry, not an unknown, but rather a
parameter. However, the matrix equation contains six unknowns, the field coefficients in
the three regions, and only four equations. Hence, the solutions are given as the span of
two eigenvectors, that is, in terms of two free parameters. These free parameters can be
chosen at will, but since illumination from the left and right are described by a[1] and
b[3], respectively, these are conveniently chosen as the free parameters.

By setting a[1] 6= 0, b[3] = 0, this represents a field that is illuminated from the left.
The matrix equation in Eq. (4.11) then contains five unknowns and four equations, and
the solution to this is the span of one eigenvector. Carrying out the same procedure
for a[1] = 0, b[3] 6= 0, which represents illumination from the right, another eigenvector
is obtained, and the superposition of these two eigenvectors that are functions of a[1]

and b[3] then determines the radiation mode for an arbitrary ρ. To follow the convention
in [Tigelis], the contribution to the eigenmode with b[3] = 0 is termed ψ1(x), and the
contribution with a[1] = 0 is termed ψ2(x):

ψm(x, ρ) =
{
erad(x, ρ)|b[3]=0, m = 1,
erad(x, ρ)|a[1]=0, m = 2,

(4.12)

where erad(x, ρ) is defined in Eq. (4.10).

Overview
The various eigenmodes and propagation constants that have been introduced in this
section are summarized in Table 1.

4.3 Normalization

This section will discuss the normalization of the eigenmodes, φl(x, s), Uj(x) and ψm(x, ρ),
that were introduced in the preceding section. As opposed to the normalization for the
closed geometry (Section 3.3), the Power inner product will not be applied, but rather
the simpler L2(R):

〈f, g〉L2 =
∫ ∞
−∞

f(x)g(x)∗ dx. (4.13)
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From the result in Eq. (3.6), conversion to the Power inner product is obtained by
multiplying the above integral with a factor of β∗/2 where β represents either of the
z-propagation constants, γ(s), βj or β(ρ), depending on the mode type under investigation.
That is:

〈f, g〉p = β∗

2 〈f, g〉L
2 . (4.14)

In Section 4.6, the Power inner product will be applied in the normalization process in
order to calculate the SER. However, in Chapter 5 the L2(R) product will be applied to
be consistent with the choice of inner product in [Tigelis].

Uniform Layer
A key difference between the closed and open geometry approaches is the orthogonality
and normalization properties of the radiation modes. Since the radiation modes in the
open geometry are continuously oscillating and never vanish, the normalization integrals
are unbounded. However, by use of the Dirac delta function, a new criterion for a
normalized mode is established via [Tigelis, Snyder, Chapter 25-4]:∫ ∞

−∞
φ̌k(x, s)φ̌l(x, s′)∗ dx = N δklδ(s− s′), (4.15)

for k, l = 1, 2 and s, s′ ∈]0,∞[. φ̌ denotes a non-normalized radiation mode in a uniform
layer. N denotes the normalization constant and defines the normalized radiation modes
via φl(x, s) = φ̌l(x, s)/

√
N . Finally, δ(s − s′) is the Dirac delta function that, to be

mathematically consistent, is not a function, but a distribution. The Dirac delta function
is only meaningful if evaluated under an integral and is defined by the following property:∫ b

a

δ(x− x0)f(x) dx =
{
f(x0), x0 ∈]a, b[,
0, x0 /∈ [a, b],

(4.16)

for some a, b, x0 ∈ R, where a < b. A useful representation of δ(x − x0) is [Bransden,
Appendix A.2]:∫ b

a

δ(x− x0)f(x) dx = lim
ε→∞

∫ b

a

[
1

2π

∫ ε

−ε
exp (ik(x− x0)) dk

]
f(x) dx. (4.17)

Rather than using this somewhat cumbersome definition, a weaker definition of the Dirac
delta function is introduced as:

δ(x− x0) = 1
2π

∫ ∞
−∞

exp (ik(x− x0)) dk, (4.18)

The integral in Eq. (4.18) does not converge, and hence it should implicitly be understood
that this weak definition only applies in the sense of a short hand form of Eq. (4.17).

The normalization constant is derived in Appendix D.2 where a validation of the
orthogonality relation in Eq. (4.15) is also given. The resulting normalized radiation
modes in a uniform layer are given as:

φl(x, s) = 1√
2π

{
exp (−isx) , l = 1,
exp (isx) , l = 2.

(4.19)
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Waveguide Layer
Guided Modes

The normalization of the guided modes is simpler than that of the radiation modes
because these modes decrease exponentially for |x| → ∞. It is consequently possible to
scale the field coefficients such that:∫ ∞

−∞
|Uj(x)|2 dx = 1. (4.20)

The normalization constant, Nj ≡
∫∞
−∞ |Ǔj(x)|2 dx, for a non-normalized guided mode,

Ǔj(x), is given in Appendix D.3, and the normalized modes are once again given through
the relation Uj(x) = Ǔj(x)/

√
Nj .

Radiation Modes

The normalization of the waveguide radiation modes, ψ̌m(x, ρ), can in principle be carried
out by direct computation of the normalization integral. However, an alternative and
more graceful procedure exists, and this is presented in the following. Initially, it is
noticed that the waveguide radiation modes, ψ̌m(x, ρ), must reduce to the uniform layer
radiation modes, φ̌m(x, ρ), when the refractive index difference, ∆n, tends to zero. The
radiation modes ψ̌m(x, ρ) may then conveniently be written as the sum of a uniform layer
radiation mode, φ̌m(x, ρ), and a scattering contribution, ξ̌m(x, ρ), which is due to the
waveguide profile:

ψ̌m(x, ρ) = φ̌m(x, ρ) + ξ̌m(x, ρ). (4.21)

The uniform layer term, φ̌m(x, ρ), represents the illumination of the waveguide from either
the left, m = 1, or from the right, m = 2. To clarify: If the coefficient in ψ̌1(x, ρ) that
represents illumination from the left is denoted ǎ[1], then the uniform layer term, φ̌1(x, ρ),
is described by the same field coefficient, such that φ̌1(x, ρ) = ǎ[1] exp(−iρx). Similarly,
ψ̌2(x, ρ) is illuminated from the right by the coefficient b̌[3], and the corresponding
corresponding uniform layer term is forced to take the form φ̌2(x, ρ) = b̌[3] exp(iρx).
[Sammut] proves that the Power inner product of ψ̌m(x, ρ) reduces to the Power inner
product of φ̌m(x, ρ), that is, that the contributions from the scattering term vanishes.
Consequently, the L2(R) inner product of ψ̌m(x, ρ) must also reduce to the L2(R) inner
product of φ̌m(x, ρ), because the two inner products only differ by the constant factor
β(ρ)∗/2. Using this, the normalization integral of a waveguide radiation mode can be
rewritten as:∫ ∞

−∞
ψ̌k(x, ρ)ψ̌m(x, ρ′)∗ dx =

∫ ∞
−∞

φ̌k(x, ρ)φ̌m(x, ρ′)∗ dx = N δkmδ(ρ− ρ′). (4.22)

Assuming that the illumination terms in ψ̌k(x, ρ) and ψ̌m(x, ρ′), that is φ̌k(x, ρ) and
φ̌m(x, ρ′), respectively, are given such that their field coefficients equal unity, the resulting
normalization constant equals N = 2π, cf. Appendix D.2. The resulting normalized
waveguide radiation modes can then be rewritten by use of Eq. (4.12):

ψm(x, ρ) = 1√
2π

{
erad(x, ρ)|a[1]=1, b[3]=0, m = 1,
erad(x, ρ)|b[3]=1, a[1]=0, m = 2,

(4.23)



4.4. ORTHOGONALITY AND COMPLETENESS 49

4.4 Orthogonality and Completeness

This section presents a number of orthogonality and completeness relations that relate
the different kinds of modes introduced in Section 4.2. Throughout, it is assumed that
all modes are normalized with respect to the L2(R) inner product, as described in the
preceding section. Some of the relations have been presented in the previous section,
and some are given in [Tigelis]. In [Tigelis], the modes are expressed in terms of real
functions, and consequently the real L2(R) inner product, 〈f, g〉L2 =

∫∞
−∞ f(x)g(x) dx, is

used. In the following, these relations are assumed to hold for the modes presented in
Section 4.2 when the complex L2(R) inner product, introduced in Eq. (4.13) ,is applied.
The relations are stated below:∫ ∞

−∞
Uj(x)Uk(x)∗ dx = δjk, j, k = 1, 2, . . . , N,∫ ∞

−∞
ψm(x, ρ)ψk(x, ρ′)∗ dx = δmk δ(ρ− ρ′), m, k = 1, 2,∫ ∞

−∞
φl(x, s)φk(x, s′)∗ dx = δlk δ(s− s′), l, k = 1, 2,∫ ∞

−∞
Uj(x)ψm(x, ρ)∗ dx = 0, j = 1, 2, . . . , N, m = 1, 2,

N∑
j=1

Uj(x)Uj(x′)∗ +
2∑

m=1

∫ ∞
0

ψm(x, ρ)ψm(x′, ρ)∗ dρ = δ(x− x′),

2∑
l=1

∫ ∞
0

φl(x, s)φl(x′, s)∗ ds = δ(x− x′),

(4.24a)

(4.24b)

(4.24c)

(4.24d)

(4.24e)

(4.24f)

where N denotes the number of guided modes within the waveguide. The conjugated
versions of the above relations also hold since δ(x− x′)∗ = δ(x− x′).

The relations in Eqs. (4.24) play an important role when two layers in the open
geometry are considered and analyzed in Chapter 5, in particular in the derivations of
transmission and reflection coefficients and of an integral equation for the field at the
interface between the two layers.

4.5 Eigenmode Expansion

This section serves to express the electric field in a layer in terms of the eigenmodes,
discussed and analyzed in the previous sections. Especially, the treatment of the radiation
modes differ compared to the closed geometry because a continuum of radiation modes
exist. First, the electric field in a uniform layer is discussed, and secondly the field in a
waveguide layer.

Uniform Layer
The field in a uniform layer consists solely of contributions from radiation modes. Because
a radiation mode does not tend to zero as |x| → ∞, it cannot be given physical substance
in itself: For instance, to excite any specific radiation mode, φ(x, s), an infinite amount
of energy would be required. However, if an infinite number of radiation modes are
excited, the resulting superposition of these radiation modes may constitute a wave of
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finite energy [Sammut]. Consequently, the field, E(x, z), in a uniform layer is constructed
as the superposition of all allowed uniform layer radiation modes [Snyder, Chapter 25-3].
For some layer with uniformity along both x and z, illuminated from either the top or
the bottom, the field may be written as:

E(x, z) =
2∑
l=1

∫ ∞
0

Al(s)φl(x, s) exp(±iγ(s)z) ds, (4.25)

where Al(s) denote the modal amplitudes. The exponential term in z accounts for the
z-dependence in the layer, as defined by Eq. (2.14b). Specifically, exp(−iγ(s)z) represents
a forward propagating field, while exp(iγ(s)z) represents a backward propagating field.

In a general layer in which there may exist both forward and backward propagating
components along z, one must include additional terms, such that:

E(x, z) =
2∑
l=1

∫ ∞
0

φl(x, s)
[
Al(s) exp(−iγ(s)z) +Bl(s) exp(iγ(s)z)

]
ds, (4.26)

where the coefficients Al(s) and Bl(s) are modal amplitudes.

Waveguide Layer
The field in a waveguide layer, contrary to the field in a uniform layer, consists of
contributions from both guided modes and radiation modes. Including again all radiation
modes, and now also the discrete set of guided modes, the field in a general waveguide
layer consisting of both forward and backward propagating parts becomes:

E(x, z) =
N∑
j=1

Uj(x)
[
Aj exp(−iβjz) +Bj exp(iβjz)

]

+
2∑

m=1

∫ ∞
0

ψm(x, ρ)
[
Cm(ρ) exp(−iβ(ρ)z) +Dm(ρ) exp(iβ(ρ)z)

]
dρ, (4.27)

where N denotes the number of guided modes. The Coefficients Aj , Bj , Cm(ρ) and
Dm(ρ) are modal amplitudes.

4.6 Spontaneous Emission Rate

This section will investigate the normalized SER, α, in an open uniform layer and in an
open waveguide layer. As for the closed geometry (Section 3.8), the normalized SER
can equally well be calculated as the power ratio, P/P0, where P is the power emitted
from the current source in a given optical environment and P0 is the power emitted from
the same current source, but in a uniform layer. From this convention, the power ratio,
and hence the normalized SER, in a uniform layer equals unity. The following section
consequently serves to derive a value for the reference power, P0. The ensuing section
derives the power emitted from the current source inside a waveguide layer. For the
waveguide layer, the continuous description of the contributing radiation modes must,
due to the numerical implementation, be abandoned in favor of a discrete sampling of the
continuum of radiation modes. Hence, as in the closed geometry, the calculation of the
SER is again discretized, and dependent on the number of included modes.
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Modeling

The current source, J(r), is assumed to be of the same dipole type as in the closed
geometry, namely:

J(r) = δ(z)δ(x− xc) ŷ, (4.28)

which leads to the same general expression for the power as for the closed geometry (see
Eq. (3.34)):

P = −1
2Re(E(xc, 0)). (4.29)

Thus, to determine the power, P , the electric field that the dipole excites must be
expressed. To follow the convention in [Snyder], all modes are in this section assumed
normalized with respect to the Power inner product.

Uniform Layer

In a uniform and open layer, the electric field can generally be expressed as in Eq. (4.26).
In this context, it should be noted that the dipole current is placed in z = 0, and
since the geometry has uniformity along z, the field for z > 0 and for z < 0 consists
solely of z-dependent parts that propagate along the positive and negative z-directions,
respectively:

E(x, z) =
2∑
l=1

{∫∞
0 Al(s)φl(x, s) exp(−iγ(s)z) ds, z ≥ 0,∫∞
0 Al(s)φl(x, s) exp(iγ(s)z) ds, z < 0.

(4.30)

Due to symmetry, the modal amplitudes, Al(s), for propagation along the positive and
negative z-directions, respectively, must be equal. The modal amplitudes are given as
[Snyder, Eq. (31-37a)]:

Al(s) = − 1
4N ′(s)

∫
V
φl(x, s)∗ · J(r) exp(−iγ(s)z) dΩ, (4.31)

where N ′(s) is given by use of the Power inner product normalization (Eq. (3.8)):
N ′(s) = γ(s)∗/|γ(s)|N (s), with N (s) = 1. The vectorial mode, φ(x, s), is given as
φl(x, s) = φl(x, s) ŷ, and the integral is taken over a volume, V, that bounds the current
source. Using this and the form of the current source given in Eq. (4.28) gives the
following expression for the modal amplitudes:

Al(s) = − |γ(s)|
4γ(s)∗φl(xc, s)

∗. (4.32)

Combining Eqs. (4.29), (4.30) and (4.32) gives an explicit expression for the power:

P =
2∑
l=1

1
8

∫ ∞
0
|φl(xc, s)|2 Re

(
|γ(s)|
γ(s)∗

)
ds. (4.33)

By its definition in Eq. (4.4), γ(s) is only real when s ≤ nk0 which truncates the integral
at s = nk0. As earlier stated, the modes are normalized with respect to the Power inner
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product which, when applying the relation between the Power inner product and the
L2(R) inner product in Eq. (4.14), gives:

|φl(xc, s)|2 =
∣∣∣∣√ 1
Np

exp(∓isxc)
∣∣∣∣2 ≡

∣∣∣∣∣
√

2
γ(s)∗

1
NL2

exp(∓isxc)

∣∣∣∣∣
2

=
∣∣∣∣ 2
NL2γ(s)∗

∣∣∣∣ | exp(∓isxc)|2

=
∣∣∣∣ 2
2πγ(s)∗

∣∣∣∣
= 1
πγ(s) , (4.34)

where Np is the normalization constant related to modes normalized with respect to the
Power inner product, and NL2 is the normalization constant that was derived with the
L2(R) inner product in Appendix D.2. In the last step, it has been used that γ(s) is real
and positive in the range 0 ≤ s ≤ nk0, such that γ(s)∗ = γ(s). Insertion in Eq. (4.33)
then finally gives the reference power, P0:

P0 ≡ P =
2∑
l=1

1
8π

∫ nk0

0

1√
n2k2

0 − s2
ds (4.35a)

= 1
4π

[
arcsin

(
s

nk0

)]nk0

0

m

P0 = 1
8 . (4.35b)

The value of P0 is given in arbitrary units and serves both in the closed and open geometry
calculations as the reference power that all powers are normalized with respect to.

Waveguide Layer

By the general result in Eq. (4.29), the power emitted from the dipole current in the
waveguide layer is given by the value of the field at the origin of the dipole current. The
field is generally given by an expansion on the allowed eigenmodes in the waveguide
layer, as described in Eq. (4.27). As for the uniform layer, the field for z > 0 and
z < 0 contains only z-dependent parts that propagate along the positive and negative
z-directions, respectively:

E(x, z) =



N∑
j=1
AjUj(x) exp(−iβjz) +

2∑
m=1

∫ ∞
0
Bm(ρ)ψm(x, ρ) exp(−iβ(ρ)z) dρ, z ≥ 0,

N∑
j=1
AjUj(x) exp(iβjz) +

2∑
m=1

∫ ∞
0
Bm(ρ)ψm(x, ρ) exp(iβ(ρ)z) dρ, z < 0,

(4.36)

where the modal amplitudes, Aj and Bm(ρ), as for the uniform layer, due to symmetry
must be equal for propagation along either of the two z-directions. The power may
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conveniently be defined as the sum of a guided mode contribution, Pg, and a radiation
mode contribution, Pr:

P = Pg + Pr. (4.37)

In the following paragraphs, expressions for Pg and Pr are derived.
The contribution from the guided modes can be derived in the same way as the power

emitted from a dipole in a closed geometry waveguide layer, and the result, in terms of
the guided modes in the open geometry, Uj(x), is therefore given by Eq. (3.40):

Pg = 1
8

N∑
j=1
|Uj(xc)|2, (4.38)

where N is the number of guided modes. From the scheme on p. 44, all βj are real, and
therefore all guided modes contribute to the power.

Concerning the contribution from the radiation modes, the expression in Eq. (4.33),
derived for the radiation modes in the vacuum layer, is valid for the radiation modes in
the waveguide layer, with the change from φl to ψm, s to ρ, and γ(s) to β(ρ):

Pr = 1
8

2∑
m=1

∫ ∞
0
|ψm(xc, ρ)|2 Re

(
|β(ρ)|
β(ρ)∗

)
dρ = 1

8

2∑
m=1

∫ n1k0

0
|ψm(xc, ρ)|2 dρ, (4.39)

where the last equal sign follows from the definition of β(ρ) in Eq. (4.7). The total power
emitted is then found by combining Eqs. (4.37), (4.38) and (4.39):

P = 1
8

(
N∑
j=1
|Uj(xc)|2 +

2∑
m=1

∫ n1k0

0
|ψm(xc, ρ)|2 dρ

)
. (4.40)

In principle, the above expression can be applied to evaluate the power for a dipole placed
at an arbitrary x in the waveguide layer. However, the numerical implementation of the
Pr integral-term makes it beneficial to express this term more explicitly. To this end, it is
assumed that the dipole is situated in the core region of the waveguide (the region with
refractive index n2 in Fig. 4.2(b)), and using the definition of ψm(x, ρ) from Eq. (4.10)
insertion in Eq. (4.39) gives:

Pr = 1
8

2∑
m=1

∫ n1k0

0

∣∣∣a[2]
m exp(−iρcoxc) + b[2]

m exp(iρcoxc)
∣∣∣2 dρ

= 1
8

2∑
m=1

∫ n1k0

0

∣∣a[2]
m

∣∣2 +
∣∣b[2]
m

∣∣2 + a[2]
m b

[2]∗
m exp(−2iρcoxc) + a[2]∗

m b[2]
m exp(2iρcoxc) dρ

= 1
8

2∑
m=1

∫ n1k0

0

∣∣a[2]
m

∣∣2 +
∣∣b[2]
m

∣∣2 + 2Re
(
a[2]
m b

[2]∗
m exp(−2ρcoxc)

)
dρ. (4.41)

It is worth stressing that the field coefficients, a[2]
m and b[2]

m , and the x-propagation constant
in the waveguide, ρco, are all functions of the x-propagation constant in the cladding
regions, ρ. Since no analytical expressions for the dependence of the field coefficients on
ρ are available, the expression in Eq. (4.41) cannot be reduced any further. The total
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power emitted from the dipole, placed in the core region, is then given by insertion of the
new expression for Pr into Eq. (4.40):

P = 1
8

(
N∑
j=1
|Uj(xc)|2 +

2∑
m=1

∫ n1k0

0

∣∣∣a[2]
m

∣∣∣2 +
∣∣∣b[2]
m

∣∣∣2 + 2Re
(
a[2]
m b

[2]∗
m exp(−2ρcoxc)

)
dρ
)
.

(4.42)

Comparing the expressions for the waveguide layer power in the closed and open geome-
tries, Eqs. (3.40) and (4.42), respectively, the contributions from the guided modes are
qualitatively the same in the two approaches, namely sums over these discrete modes.
The contributions from the semi-radiating and radiating modes, in turn, differ as these
are sums over discrete modes and integrals over continuous modes in the closed and open
geometries, respectively. Therefore, the essential difference in the determination of the
power in the two approaches is the treatment of the semi-radiating/radiating modes. The
treatment of these in the open geometry approach is the subject of the following sections
where the integral is approximated numerically in different ways.

Computational Results

The power emitted from a dipole in a waveguide layer was expressed in the previous
section, and as therein mentioned, the integral component of the expression must be
evaluated numerically. Therefore, determination of the power is essentially a matter of
approximating the integral in Eq. (4.42), and in the following sections it is approximated
in two different ways. The approximation of the integral is carried out by introducing
a discretization of the continuous propagation constants, and this discretization can,
in principle, be chosen at will. Compared to the closed geometry where the power is
given as a sum over the discrete eigenmodes and where the discretization is dictated by
the geometry (dimensions of solution domain and refractive indices), this free choice of
discretization in the open geometry represents a parameter that, if chosen correctly, can
be exploited to obtain rapid convergence.

First, a Riemann sum is used to approximate the integral, and the resulting approxi-
mate power is presented as a function of the repetition length, Lrep, that will be introduced
in the following section. Afterwards, an alternative approach using a non-equidistant
discrete sampling of the integrand is presented, leading to significantly faster convergence.
Since the power in the uniform layer has an analytical value, these procedures are also
applied to the integral in Eq. (4.35a) as this allows assessments of the convergence of the
applied procedures.

Riemann Sum

Even though the integral in determining the power emitted from the dipole in a uniform
layer, P0, is analytically solvable, it is instructive to apply the Riemann sum procedure to
this as well as to the power in the waveguide layer. The integrand for the uniform layer
power is 1/γ(s) (Eq. (4.35a)), and for the waveguide layer power it is (Eq. (4.42)):

Γm(ρ) ≡
∣∣∣a[2]
m

∣∣∣2 +
∣∣∣b[2]
m

∣∣∣2 + 2 cos(2ρcoxc)Re
(
a[2]
m b

[2]∗
m

)
, (4.43)

and these are plotted as functions of s and ρ, respectively, in Figs. 4.3(a) and 4.3(b). The
two plots have been obtained with n = n1 = 1, n2 = 2, and λ = 1.55µm. With these
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(a) Uniform layer. The integrand is 1/γ(s).
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(b) Waveguide layer. The integrand is Γm(ρ) with
Γ1(ρ) = Γ2(ρ), defined in Eq. (4.43).

Figure 4.3 Integrands in expressions for P , see Eqs. (4.35a) and (4.43), in open geometry. The
plots display the integrands as well as the discrete, equidistant sampling points used in the
Riemann sum.

values nk0 = n1k0 = 2π/1.55µm = 4.05µm−1. The width of the core in the waveguide
layer is chosen as Dg = 2.0µm. Due to symmetry, Γ1(ρ) = Γ2(ρ).

The integrals that define the contributions to the power emitted from the dipole in the
uniform and waveguide layers, respectively, may, as a first approach, be approximated by
a Riemann sum. That is, the integration interval is divided into a number of subintervals,
#, each of the same width, and these intervals then define a series of rectangles that
are used to approximate the integral. Besides the different values, the two integrands
exhibit the same behavior: They are both almost constant for s, ρ ∈ [0, 3.5µm−1], and
as s and ρ approach nk0 and n1k0, respectively, the integrands diverge. In the plots,
# = 12 subintervals have been defined by their middle points, and these points are used
to approximate the integrals using the Riemann sum procedure.

In order to compare the results with those for the closed geometry, for which the power
ratio was determined as a function of the x-width of the geometry, Lx, it is desirable
to present the power ratio in the open geometry as a function of a characteristic length.
This length, called the repetition length, Lrep, is introduced in the following.

The repetition length is the length along x over which the field repeats itself. In
Appendix D.4, a relation between the repetition length and the number of subintervals is
derived, and this is:

Lrep = 2π#
nk0

. (4.44)

Hence, the repetition length is proportional to the number of subintervals. Derivation of
the repetition length for the waveguide layer is less apparent than for a uniform layer,
but qualitatively Lrep can be assumed to remain proportional to #, and plotting the
power ratio for the waveguide as a function of Lrep is consequently still instructive. The
numbers of subintervals in the Riemann sums will be chosen such that Lrep has values in
the same range as Lx in Eq. (3.47):

# ∈ [4, 5, . . . , 19]⇔ Lrep ∈ [6.20µm, 7.75µm, . . . , 29.45µm]. (4.45)

Using this range of subintervals, the power ratios for the uniform layer and for the
waveguide layer have been determined using the Riemann sum approach as functions of
# and Lrep. The results can be seen in Figs. 4.4(a) and 4.4(b), respectively.
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Figure 4.4 Power ratio as function of repetition length, Lrep. The power ratios have been
calculated using the Riemann sum procedure to evaluate the integrals. The upper axes indicate
the number of subintervals, #.

Since the power ratio for the uniform layer should equal unity, the plot in Fig. 4.4(a)
can be used to judge the Riemann sum procedure. Fig. 4.4(a) shows that α converges
uniformly to unity, as expected, but that the convergence is slow: The power ratio
evaluated with the Riemann procedure is concave with Lrep. To facilitate a comparison
of the Riemann integration procedure with the procedure to be presented in the following
section, the value of # and thereby also Lrep at which the power ratio deviates less
than one percent from the analytical value is determined as # = 742 or equivalently
Lrep = 1.15 mm.

Concerning the power ratio for the waveguide layer, the analytical value is not known,
but by determining the power ratio with # = 10000 sampling points an approximate
”true” value can be obtained as αg,tr = 0.906. Using this ”true” value, the number of
intervals and the corresponding repetition length that yield a deviation of less than one
percent may be calculated as # = 63 and Lrep = 97.7µm.

By inspection of the integrands, namely the relatively slow variations for small values
of s and ρ and the divergence near s = nk0 and ρ = n1k0, respectively, it can be concluded
that an equidistant sampling of the integrand is not optimal. Rather, the sampling points
should be positioned increasingly dense as s and ρ approach their respective singularities.
Such a procedure is presented in the following section.

Compared to the results obtained for the closed geometry (Section 3.8) where no
convergence was obtained the above results exhibit a convergence which evidently presents
a great improvement. However, incentivized by the slow convergence, a more intelligent
procedure for positioning the sampling points is presented in the following section, and
the resulting convergence speed is compared to that obtained by use of the Riemann sum.

Non-Equidistant Points

Referring to the plots of the integrands in Fig. 4.3, it is seen that the sampling points should
be placed increasingly dense as the singularities are approached. Such a non-equidistant
spacing of the points could be carried out in several ways, but the symmetry-properties of
the uniform layer presents a solution that both physically and mathematically provides
an intuitive procedure for the choice of sampling points. In the following, this procedure
is firstly described, and next it is applied to calculate the power ratios in the uniform and
waveguide layers, respectively.

In the uniform layer, the dipole current source experiences an environment that is
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completely symmetric in the xz-plane, that is, no direction in this plane can be preferred.
Consequently, equal amounts of light are emitted in all directions in the xz-plane, and
therefore any weighting between the contributions from the x- and z-propagation constants,
s and γ, to the total propagation constant:

nk0 =
√
s2 + γ2, (4.46)

are equally important. This can be illustrated as in Fig. 4.5 where an (s, γ)-plane is
indicated. The radius of the quarter circle equals the total propagation constant, nk0,
and by the convention of positive x- and z-propagation constants, only the first quadrant
is needed for the description.

s

γ

nk0

nk0

∆s

(a) Sampling: Equal s spacing.

s

γ

nk0

nk0

∆θ

(b) Sampling: Equal angular spacing.

Figure 4.5 Plot of Eq. (4.46) in the (s, γ)-plane where the quarter circle represents the total
propagation constant, nk0, in the uniform layer.

In Fig. 4.5(a), the equal s-spacing that was used in the previous section is indicated.
The figure clearly illustrates that this sampling does not induce an equal weighting of
all directions in the (s, γ)-plane, but favors certain directions. From this, it can be
understood that the choice of s-values used in the Riemann sum is inexpedient.

Fig. 4.5(b) shows an equal angular spacing which ensures an equal weighting of all
directions. It also illustrates that as s approaches nk0 the spacing between the values of
s decreases. In terms of the angle from the s-axis, θ, s is given as:

s = nk0 cos(θ). (4.47)

Thus, by choosing equidistant values of θ in the range:

θ ∈
[
0, π2

]
, (4.48)

Eq. (4.47) gives non-equidistant and increasingly dense values of s as the singular end
point is approached.

Strictly, the above description of the xz-plane symmetry holds only for the uniform
layer and not for the waveguide layer because certain directions must be favored in
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the waveguide layer. However, the waveguide layer can be considered as a perturbed
uniform layer where the high-refractive index region is a minor perturbation of the infinite
solution domain. In this picture, the θ-sampling must, if the refractive index contrast,
∆n ≡ n2 − n1, and the core width, D, are not large, to some extent remain valid, and
therefore this procedure is also applied for the waveguide layer. It is noted that the
integrand for the waveguide layer qualitatively looks as the integrand for the uniform
layer which further supports the use of the θ-procedure for the waveguide layer.
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(b) Waveguide layer. The integrand is Γm(ρ), de-
fined in Eq. (4.43).

Figure 4.6 Integrands in expressions for P , see Eqs. (4.35a) and (4.43), in open geometry. The
plots display the integrands as well as the non-equidistant sampling points given by Eq. (4.47).

The θ-sampling can be seen for the two types of layers in Figs. 4.6(a) and 4.6(b),
respectively, with # = 12 subintervals. The plots illustrate the non-equidistant spacing
of the discrete s- and ρ-values. Using the same number of intervals as for the powers
in Fig. 4.4, but now with the θ-sampling, shown in Fig. 4.6, the powers as functions of
the number of intervals for the uniform layer and for the waveguide layer can be seen in
Figs. 4.7(a) and 4.7(b), respectively. As the sampling is non-equidistant, the results can
no longer be compared to the repetition length.
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Figure 4.7 Power ratios as functions of number of included sampling points. The power ratios
have been calculated using the non-equidistant sampling procedure given in Eq. (4.47).

Comparing firstly the results for the vacuum layer with those obtained with the
Riemann sum procedure, it is seen that the power ratio converges to unity, and in
particular that faster convergence is obtained with the non-equidistant spacing of the
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s-values: With # = 24 intervals, the error is less than one percent. For the waveguide
layer, faster convergence is also obtained, and comparing again with the ”true” value,
αg,tr = 0.906, it is found that # = 7 gives an error of less than one percent.

In conclusion, the non-equidistant spacing of the sampling values of s and ρ has proven
to deliver a much faster convergence than the Riemann sum procedure. Since, as earlier
stated, the determination of the power ratio is essentially a matter of approximating the
radiation mode contribution, this fast convergence is highly desirable. The convergence
studies for the two methods for approximating the integrals have also unveiled another
interesting point: For both methods, the convergence is faster for the waveguide layer than
for the uniform layer. For the uniform layer, the integral is the only contribution to the
power, and hence the result is critically dependent on the approximation of the integral.
For the waveguide layer, the power is made up of a sum-contribution from the guided
modes and an integral-contribution from the radiation modes. Since the waveguide layer
convergence is obtained for a comparatively smaller number of subintervals, a significant
part of the emitted power must be due to the guided modes.

The overall picture for both of the procedures applied to calculate the power is that
uniform convergence is obtained. Compared to the corresponding results for the closed
geometry approach, this is a significant improvement, and the choice of procedure for
approximating the integrals in the open geometry is largely a matter of the speed of the
uniform convergence. The results in this section illustrate a major superiority of the
open geometry approach compared to the closed geometry approach, namely that the
normalized SER can be determined unambiguously using the open geometry approach.
As earlier discussed, the difference in the determination of the power in the closed and
open geometry approaches is essentially the treatment of the contributions from the
semi-radiating and radiating modes, respectively. From the converging results in the open
geometry approach, it is concluded that the open geometry treatment of the radiation
modes is more realistic and accurate than the corresponding closed geometry treatment.

4.7 Summary

This chapter has introduced the open geometry approach, and in this first introductory
chapter single-layers have been treated. The next chapter presents and analyzes the more
interesting and advanced open two-layer geometry.

The open geometry has essentially been introduced as the limiting case of the closed
geometry when the width of the geometry tends to infinity. Physically, this prompts
that the electric field is nowhere forced to vanish, and hence the outer BCs that were
introduced for the closed geometry do not exist for the open geometry.

Specifically, a uniform open layer and a waveguide open layer have been analyzed.
In the uniform layer, no BCs exist, and therefore no constraints are put on the real
x-propagation constants, s, of the layer which accordingly form a continuum in the range
]0,∞[. Consequently, no guided modes, but only radiation modes exist in such a layer.
Since these radiation modes are oscillatory along the entire x-axis, a new normalization
procedure was introduced, utilizing the Dirac delta function. In the waveguide layer, both
a finite number of discrete guided modes and a continuum of radiation modes exist. The
normalization of the guided modes was carried out as for the closed geometry, whereas
the normalization of the waveguide layer radiation modes proved to be given, in essence,
as for the radiation modes of the uniform layer.

Next, a number of orthogonality and completeness relations involving the modes in
the different types of open geometry layers were presented, and these play a central role
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in the treatment of the open two-layer geometry in the next chapter. Following this, the
expansion of the electric field on the eigenmodes was introduced.

In the determination of expressions for the normalized SER, as for the closed geometry
due to a dipole current source, the electric field expansions were applied, and the
expressions for the power ratio in the uniform layer and in the waveguide layer contained
improper integrals. The expression for the power in the uniform layer had an analytical
value, and in both the closed and open geometries this power is used as the reference
power. The improper integral in the expression for the power in the waveguide layer
had no immediate analytical solution, and the determination of the emitted power in the
waveguide was consequently a matter of obtaining a precise approximation to this integral.
To this end, two different numerical approaches, namely a Riemann sum approach and a
non-equidistant sampling approach, were introduced. Both approaches displayed uniform
convergence, but the non-equidistant approach at a much faster rate. Still, the SER results
essentially converged, regardless of integral-approximation approach, and compared to the
corresponding results for the closed geometry this represents a significant improvement.
The improved results in the open geometry approach were, in particular, explained by
and attributed to the treatment of the radiation modes.



Chapter 5
Open Geometry: Two Layers

5.1 Introduction

This chapter focuses on the special case of light emission from an abruptly terminated
symmetric slab waveguide into a uniform medium in the open geometry approach. The
situation is sketched in Fig. 5.1 where a waveguide layer and a uniform layer have
been brought together at z = 0. The waveguide and uniform layers are termed layer 1
and 2, respectively. For simplicity, it is assumed that the waveguide supports only the
fundamental mode, U1(x), which limits this treatment to thin waveguide cores and low
index contrasts ∆n = n2−n1. The refractive index of the uniform layer, n0, is arbitrary.

x

z

−D2
D
2

n1 n2 n1

n0

{1}

{2}

z = 0

Figure 5.1 Abruptly terminated symmetric waveguide in the open geometry, illustrated in an
xz-plane.

As will be discussed at the end of this chapter, the determination of reflection
and transmission coefficients offers a direct and intuitive route to calculations of the
normalized SER in multi-layered open structures. Therefore, the open two layer problem
is of significant interest since its treatment inevitably involves calculation of reflection
and transmission coefficients between the two layers. In this treatment, light is assumed
incident on the interface from the waveguide layer whereby two scenarios must be
considered, namely an incident guided mode and an incident radiation mode. Consequently,
only reflection and transmission coefficients from layer 1 to layer 2 will be obtained.

The treatment of an incident guided mode in Section 5.2 is largely inspired by the
works in [Tigelis]. The further treatment of an incident radiation mode in Section 5.3
is a direct extension of the procedures in Section 5.2, but includes new features due to
the oscillatory nature of the radiation modes. Throughout this chapter, all modes are
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assumed normalized with respect to the L2(R) inner product to follow the convention in
[Tigelis].

5.2 Illumination by Fundamental Mode

Illuminating the structure in Fig. 5.1 along the positive z-direction with the fundamental
and guided mode, U1(x), results in reflection and transmission at the layer interface
at z = 0. Specifically, part of the incident mode is reflected back into itself and into
the continuum of radiation modes, ψm(x, ρ). Similarly, part of the incident mode is
transmitted across the interface and couple into the continuum of uniform layer radiation
modes, φl(x, s). Following the expansion of the field specified in Eqs. (4.26) and (4.27), the
field on either side of the interface, E1(x, z) and E2(x, z), respectively, can be expressed
as [Tigelis, Eq. (9)]:

E1(x, z) = U1(x) [exp(−iβ1z) +R1 exp(iβ1z)]

+
2∑

m=1

∫ ∞
0

R(ρ)ψm(x, ρ) exp(iβ(ρ)z) dρ, (5.1a)

E2(x, z) =
2∑
l=1

∫ ∞
0

T (s)φl(x, s) exp(−iγ(s)z) ds, (5.1b)

where the coefficients R1, R(ρ) and T (s) represent reflection into the guided mode,
reflection into the waveguide radiation modes and transmission into the uniform layer
radiation modes, respectively. The reflection coefficient R(ρ) generally depends on m, but
since a symmetric waveguide is considered, and since the incident mode is the symmetric
and even fundamental mode, the reflection to the m = 1 and m = 2 radiation modes,
respectively, must be equal on symmetry grounds. A similar argument applies to the
transmission coefficients T (s) for which the l-dependence is therefore omitted.

Application of z-BCs: Fredholm Equation of the Second Kind
As in the closed geometry, the field is required to remain continuous and differentiable
everywhere and in particular across any interface. Applying the continuity demand at
z = 0, and using the orthogonality properties given in Eqs. (4.24) gives the reflection and
transmission coefficients in terms of the field at z = 0, the aperture field, Φ(x):

R1 = −1 +
∫ ∞
−∞

Φ(x)U1(x)∗ dx,

R(ρ) =
∫ ∞
−∞

Φ(x)ψm(x, ρ)∗ dx, m = 1, 2,

T (s) =
∫ ∞
−∞

Φ(x)φl(x, s)∗ dx, l = 1, 2.

(5.2a)

(5.2b)

(5.2c)

The derivations of the expressions in Eqs. (5.2) are contained in Appendix E.1. Since
φl(x, s) is a complex exponential, the expression in Eq. (5.2c) indicates that the transmis-
sion coefficients essentially can be thought of as the Fourier transform of the aperture
field in the propagation constant s.

A Fredholm equation of the first kind [Baker, p. 33] for Φ(x) can be obtained by
applying the differentiability demand at z = 0 to Eqs. (5.1) while inserting the expressions
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for R1, R(ρ) and T (s) from Eqs. (5.2). The Fredholm equation of the first kind can
be converted to a Fredholm equation of the second kind by creative application of the
completeness relations in Eqs. (4.24e) and (4.24f). The details of the derivation of this
integral equation can be found in Appendix E.1, and the resulting Fredholm equation of
the second kind is:

Φ(x) = Φ0(x) + λ

∫ ∞
−∞

Φ(x′)K(x, x′) dx′, (5.3a)

where the zeroth order aperture field, Φ0(x), the integral prefactor, λ, and the kernel,
K(x, x′), are:

Φ0(x) = 2U1(x)β1

k0(n0 + n1) , (5.3b)

λ = −1
k0(n0 + n1) , (5.3c)

K(x, x′) = [β1 − k0n1]U1(x)U1(x′)∗ +
2∑

m=1

∫ ∞
0

[β(ρ)− k0n1]ψm(x, ρ)ψm(x′, ρ)∗ dρ

+
2∑
l=1

∫ ∞
0

[γ(s)− k0n0]φl(x, s)φl(x′, s)∗ ds. (5.3d)

In this context, it is noted that the expression for the Fredholm equation in [Tigelis,
Eq. (14)] is erroneous, in that it does not include the prefactor λ. The ensuing expressions
for the first and second order aperture fields are, however, correct.

The solution to the Fredholm equation is given as a Liouville-Neumann series [Tigelis,
Baker, p. 34]:

Φ(x) = lim
N→∞

{
Φ0(x) + λN

N∑
j=1

Cj(x)
}
, (5.4a)

where the jth term in the sum is given by:

Cj(x) =
∫ ∞
−∞

. . .

∫ ∞
−∞

∫ ∞
−∞

K(x, x1) . . .K(xj−1, xj)Φ0(xj) dx1 . . . dxj−1 dxj . (5.4b)

Under the restrictions given in [Baker, p. 35], the series is uniformly convergent, and so
only a finite number of the terms of Cj(x) are necessary to evaluate a valid approximation
of Φ(x). Assuming that the refractive indices of the waveguide layer, n1 and n2, are near-
identical (n1 ≈ n2), it may be justified to only include a single term in the approximation
[Tigelis]. The first order approximation of the aperture field, Φ1(x), is readily found by
evaluating Eq. (5.4a) with N = 1 rather than lim

N→∞
:

Φ1(x) = Φ0(x) + λC1(x) = Φ0(x) + λ

∫ ∞
−∞

K(x, x′)Φ0(x′) dx′. (5.4c)

In the following section, first order expressions for the aperture field and for the reflection
and transmission coefficients are derived.
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Evaluation of the First Order Aperture Field and Coefficients
The first order aperture field can be expressed explicitly by insertion of Φ0(x′) and K(x, x′)
into Eq. (5.4c) which yields:

Φ1(x) = Φ0(x)− c
{
U1(x) [β1 − k0n1]

+
2∑
l=1

∫ ∞
0

[γ(s)− k0n0]φl(x, s)〈U1, φl(s)〉L2 ds
}
, (5.5)

where the constant c is:

c = 2β1

k2
0(n0 + n1)2 , (5.6)

and where the orthogonality property in Eqs. (4.24a) and (4.24d) have been applied to
arrive at the result. 〈U1, φl(s)〉L2 denotes the overlap integral in L2(R)-space between
the fundamental mode, U1(x), and a uniform layer radiation mode, φl(x, s). The overlap
integral is defined by the L2(R) inner product as:

〈U1, φl(s)〉L2 =
∫ ∞
−∞

U1(x)φl(x, s)∗ dx. (5.7)

Appendix E.3 expresses the overlap integral 〈U1, φl(s)〉L2 . In this appendix, it is shown
that 〈U1, φ1(s)〉L2 = 〈U1, φ2(s)〉L2 , resulting from U1(x) being an even function in x.

Having obtained the first order aperture field, Φ1(x), the appertaining first order
reflection and transmission coefficients are evaluated by insertion of Φ1(x) into Eqs. (5.2).
Using the orthogonality properties in Eqs. (4.24a)-(4.24d), the first order coefficients,
R

(1)
1 , R(1)(ρ) and T (1)(s), are determined:

R
(1)
1 = −1− c

{
β1 − k0(n0 + 2n1) +

2∑
l=1

∫ ∞
0

[γ(s)− k0n0] |〈U1, φl(s)〉L2 |2 ds
}
,

(5.8a)

R(1)(ρ) = −c
2∑
l=1

∫ ∞
0

[γ(s)− k0n0] 〈φl(s), ψm(ρ)〉L2〈U1, φl(s)〉L2 ds, (5.8b)

T (1)(s) = −c〈U1, φl(s)〉L2 [−2k0(n0 + n1) + β1 + γ(s)] . (5.8c)

The inner product 〈φl(s), ψm(ρ)〉L2 is expressed in Appendix E.3, and using this R(1)(ρ)
is expressed explicitly in Appendix E.5.

The following subsection examines the results obtained from calculations of the
reflection and transmission coefficients as well as the field profile obtained from the open
geometry approach.

Computational results

To verify that the expression for R(1)
1 (ρ) (Eq. (5.8a)) is correct, it is beneficial to compare

with existing results, such as [Tigelis, Fig. 2]. Using the same parameters as in this
reference, namely a wavelength of λ = 0.86µm and refractive indices n0 = 1.0, n1 = 3.24
and n2 = 3.6 for the uniform layer, the cladding and the core, respectively, the absolute
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square of R1 is computed and plotted as a function of the width of the waveguide, D, in
Fig. 5.2(a) where exact agreement with [Tigelis, Fig. 2] is obtained.

In this context, it is noted that the D-range in [Tigelis] is in direct conflict with the
assumption of only one guided mode: For the given wavelength and refractive indices, the
waveguide changes from single-mode support to multi-mode support at approximately
D = 0.274µm. Because the second guided mode is uneven, the results remain valid even
when the waveguide supports two guided modes. However, upon inclusion of a third
guided mode at D = 0.549µm, the results evidently become faulty. To accurately compute
R

(1)
1 in a multi-mode waveguide, the Fredholm equation in Eqs. (5.3) should be re-derived

starting from different field expansions (Eqs. (5.1)). The range 0.274µm < D < 1.0µm
in Fig. 5.2(a) is indicated by a dashed line to emphasize that the calculation is not
representative in this range.
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n1 = 3.24 and n2 = 3.6.
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Figure 5.2 Reflection and transmission coefficients, R(1)
1 , R(1)(ρ) and T (1)(s).

Reflection into the radiation modes in the waveguide layer may be investigated by
plotting the absolute square of R(1)(ρ) as function of ρ which is done in Fig. 5.2(b)
for the setup parameters indicated in the figure caption. The choice of wavelength is
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again λ = 1.55µm which is used as the wavelength henceforth. As expected, R(1)(ρ)
tends to zero as ρ increases which is necessary for the field in layer 1 (Eq. (5.1a)) to be
well-defined. The range 0 < ρ < n1k0 is of special interest as it determines the far-field
radiation pattern. For values of ρ > n1k0, the z-propagation constant, β(ρ), is imaginary,
cf. Eq. (4.7), and these radiation modes are consequently evanescent along z. Therefore,
this range of ρ-values only affects the near-field pattern. A decreasing oscillatory behavior
of |R(ρ)|2 is observed in the near-field range. The oscillatory behavior can be accounted
for by a closer inspection of Eq. (5.8b): The values of R(ρ) depend on the overlap integral
〈φl(s), ψm(ρ)〉L2 which can be expected to oscillate as the two eigenmodes, φl(s) and
ψm(ρ), move in and out of phase as ρ is varied. That |R(ρ)|2 oscillates is noteworthy
because it shows that coupling to the radiation modes is not monotonously decreasing in
ρ, not even in the near field regime.

When computing the field profile from Eq. (5.1) numerically, special care must be
taken to ensure that the propagating regime, 0 < ρ < n1k0, is sampled sufficiently densely,
ensuring that the features of the far-field are well-modeled. Inclusion of ρ-values from the
near-field regime, ρ > n1k0, is necessary to obtain a continuous field across z = 0, but
does not otherwise affect the field significantly.

The last coefficient to be considered is the transmission coefficient, T (1)(s). Again, the
absolute square of the coefficient is plotted as function of the x-propagation constant, s,
and the resulting plot can be seen in Fig. 5.2(c). Similar to the case of reflection into the
waveguide radiation modes, the s-values can be separated into two ranges, namely the
far-field range, 0 < s < n0k0, which describes the propagating waves, and the near-field
range, s > n0k0, which describes the evanescent waves. This separation is indicated in
Fig. 5.2(c). The overall picture of |T (1)(s)|2 is that of a monotonously descending curve,
with the exception of a small protrusion at the transition from the propagating to the
evanescent regime. As for the reflection coefficients R(ρ), it is essential to include a
dense sampling of the propagating regime, 0 < s < n0k0, when evaluating the field in
layer 2 numerically to obtain a well-modeled far-field pattern. As discussed on p. 62, the
transmission coefficient represents the Fourier transform in s of the aperture field, and
the plot therefore shows that the aperture field is dominated by the small propagation
constants, that is, the aperture field is slowly varying in x.
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(a) Field profile due to an incident guided mode
scattered at an abrupt waveguide-vacuum in-
terface at z = 0. Setup parameters: n0 = 1.0,
n1 = 3.24, n2 = 3.6 and D = 0.15µm.
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(b) Field profile of the radiation modes excited
due to the reflection of the guided mode computed
in Fig. 5.3(a).

Figure 5.3 Field profiles for open two-layer geometry, illuminated by fundamental mode. Both
field plots are not correct, due to having been plotted with erroneous formulas. The
changes, however, are slight, and the plots are qualitatively the same.
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Finally, the field profile due to the incident guided mode is considered. Having
obtained expressions and values for R(1)

1 , R(1)(ρ) and T (1)(s), the first order field can be
approximated by insertion into Eq. (5.1). The improper integrals must necessarily be
truncated in order to allow for a practical computation. Such a truncation can be justified
on the basis of Figs. 5.2(b) and 5.2(c) since both coefficients tend to zero as ρ and s
tend to infinity. Truncating the ρ-integral at ρ = 6n1k0 and the s-integral at s = 4n0k0
then allows for approximation of the integrals by use of e.g. a Riemann sum which has
been applied in the present case. The resulting field profile can be seen in Fig. 5.3(a).
An apparent improvement compared to the results from the closed geometry approach
is observed as no parasitic reflections are visible. However, the results are qualitatively
identical to those obtained using the closed geometry approach: In layer 1, the field is
confined to the waveguide region whereas the field in layer 2 disperses from the aperture
as near-spherical waves.

It should be noted, that the quality of the open geometry field plot depends critically
on the numbers of included sampling points that have been chosen as 1500 and 1200
for the ρ- and s-integrals, respectively. A small number of sampling points results in
a correspondingly shorter repetition length, c.f. Eq. (4.44), and resulting low quality
field plots. However, much smaller numbers than the presently used can be applied with
excellent results.

From Fig. 5.3(a) it is clear that the significance of the excited radiation modes are
inferior compared to the incident and reflected guided mode, as the field in layer 1 is
dominated by the guided mode. The contribution from the radiation modes in layer 1 is
plotted in Fig. 5.3(b), to more clearly display the features of the radiation pattern given
by the integral term in Eq. (5.1a). From Fig. 5.3(b), it is seen that the radiation pattern is
mostly a local contribution to the total field, and that the effects of the reflected radiation
modes diminishes and disperses as they propagate away from the reflection-interface.
However, the radiation modes must be included to accurately model reflection away from
the core region.

5.3 Illumination by Radiation Mode

Whereas the preceding section considered illumination of the geometry in Fig. 5.1 with
the fundamental guided mode, the present section will treat illumination with an arbitrary
radiation mode, ψm̂(x, ρ̂), m̂ ∈ {1, 2}, ρ̂ ∈]0,∞[. It should be noted that the radiation
mode index, m, and the corresponding propagation constant, ρ, have been assigned a
”hat”-notation to clearly distinguish the illumination mode from other radiation modes.

As a consequence of the illumination choice, the field in layer 1 consists of the
illuminating radiation mode and the part of the illumination mode that is reflected back
into the guided mode and into the other radiation modes. Likewise, the field in layer 2
consists of the part of the illuminating radiation mode transmitted into the uniform layer
radiation modes. Using again expansions of the field, given by Eqs. (4.26) and (4.27), the
field on either side of the interface, E1(x, z) and E2(x, z), may be expressed in a manner
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similar to Eqs. (5.1):

E1(x, z) = ψm̂(x, ρ̂) exp(−iβ(ρ̂)z) +R1,m̂(ρ̂)U1(x) exp(iβ1z)

+
2∑

m=1

∫ ∞
0
Rm,m̂(ρ, ρ̂)ψm(x, ρ) exp(iβ(ρ)z) dρ, (5.9a)

E2(x, z) =
2∑
l=1

∫ ∞
0
Tl,m̂(s, ρ̂)φl(x, s) exp(−iγ(s)z) ds, (5.9b)

where R1,m̂(ρ̂), Rm,m̂(ρ, ρ̂), and Tl,m̂(s, ρ̂) represent reflection into the guided mode,
reflection into the waveguide layer radiation modes, and transmission to the uniform layer
radiation modes, respectively. These coefficients are dependent on the illumination mode,
ψm̂, which explains the subscripts m̂ and dependence on ρ̂, and generally the subscripts
m and l cannot be omitted in this case, as the illuminating mode is asymmetric.

Application of z-BCs: Fredholm Equation of the Second Kind
Demanding again that the electric field is continuous at z = 0, and using the orthonormality
relations in Eqs. (4.24c) and (4.24d), the following expressions for R1,m̂(ρ̂), Rm,m̂(ρ, ρ̂),
and Tl,m̂(s, ρ̂), given in terms of the aperture field at z = 0, Θm̂(x, ρ̂), are derived in
Appendix E.4:

R1,m̂(ρ̂) =
∫ ∞
−∞

Θm̂(x, ρ̂)U1(x)∗ dx,

Rm,m̂(ρ, ρ̂) =
∫ ∞
−∞

Θm̂(x, ρ̂)ψm(x, ρ)∗ dx− δm̂mδ(ρ̂− ρ),

Tl,m̂(s, ρ̂) =
∫ ∞
−∞

Θm̂(x, ρ̂)φl(x, s)∗ dx.

(5.10a)

(5.10b)

(5.10c)

The term δm̂mδ(ρ̂ − ρ) in the expression for Rm,m̂(ρ, ρ̂) represents reflection into the
illumination radiation mode since this term only contributes to the field in layer 1
(Eq. (5.9a)) when ψm(x, ρ) = ψm̂(x, ρ̂).

As for illumination by a guided mode, treated in the previous sections, application
of the demand of differentiability at z = 0 and the expressions in Eqs. (5.10) yield a
first order Fredholm equation, and further application of the completeness relations in
Eqs. (4.24e) and (4.24f) transforms this into a second order Fredholm equation:

Θm̂(x, ρ̂) = Θ0,m̂(x, ρ̂) + λ

∫ ∞
−∞

Θm̂(x′, ρ̂)K(x, x′) dx′, (5.11a)

where:

Θ0,m̂(x, ρ̂) = 2β(ρ̂)ψm̂(x, ρ̂)
k0(n0 + n1) , (5.11b)

K(x, x′) = U1(x)U1(x′)∗(β1 − n1k0) +
2∑

m=1

∫ ∞
0

ψm(x, ρ)ψm(x′, ρ)∗(β(ρ)− n1k0) dρ

+
2∑
l=1

∫ ∞
0

φl(x, s)φl(x′, s)∗(γ(s)− n0k0) ds, (5.11c)
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are the zeroth order aperture field and the kernel of the second order Fredholm equation,
respectively. The integral prefactor, λ, is given in Eq. (5.3c). The above equations are
derived in Appendix E.4.

The solution to this Fredholm equation is given by the scheme in Eqs. (5.4) with the
changes from Φ0(x)→ Θ0,m̂(x, ρ̂) and K(x, x′)→ K(x, x′). In the following section, the
first order aperture field and the first order reflection and transmission coefficients are
expressed.

Evaluation of the First Order Aperture Field and Coefficients
The first order aperture field, Θ1,m̂(x, ρ̂), resulting from illumination by an arbitrary
radiation mode, ψm̂(x, ρ̂), is given by the expression in Eq. (5.4c) with the change from
Φ0(x) → Θ0,m̂(x, ρ̂) and K(x, x′) → K(x, x′). Applying the orthogonality relations in
Eqs. (4.24b) and (4.24d), the following expression is obtained:

Θ1,m̂(x, ρ̂) = Θ0,m̂(x, ρ̂)− C
{
ψm̂(x, ρ̂)(β(ρ̂)− n1k0)

+
2∑
l=1

∫ ∞
0

φl(x, s)(γ(s)− n0k0)〈ψm̂(ρ̂), φl(s)〉L2 ds
}
, (5.12)

where:

C = 2β(ρ̂)
k2

0(n0 + n1)2 . (5.13)

By insertion of the first order aperture field in Eq. (5.12) into the expressions in
Eqs. (5.10), expressions for the first order reflection and transmission coefficients are
obtained:

R(1)
1,m̂(ρ̂) = − C

2∑
l=1

∫ ∞
0
〈ψm̂(ρ̂), φl(s)〉L2〈φl(s), U1〉L2(γ(s)− k0n0) ds, (5.14a)

R(1)
m,m̂(ρ, ρ̂) = δmm̂δ(ρ− ρ̂) {C [k0(2n1 + n0)− β(ρ̂)]− 1}

− C
2∑
l=1

∫ ∞
0
〈ψm̂(ρ̂), φl(s)〉L2〈φl(s), ψm(ρ)〉L2 [γ(s)− k0n0] ds, (5.14b)

T (1)
l,m̂ (s, ρ̂) = C〈ψm̂(ρ̂), φl(s)〉L2 [2k0(n0 + n1)− β(ρ̂)− γ(s)]. (5.14c)

As for illumination by a guided mode, the reflection and transmission coefficients
may be expressed explicitly in finite terms and Dirac delta terms using the expres-
sion for the overlap integral between the waveguide layer and uniform layer radiation
modes, 〈ψm(ρ), φl(s)〉L2 , introduced in Appendix E.3. These expressions can be found in
Appendix E.5.

The following section presents computational results for the first order expressions
that have been derived and discussed in this section.

Computational results
This section contains the first computational results for illumination by a radiation mode.
The numerical investigations of the first order expressions, derived in the preceding section
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(Eqs. (5.12) and (5.14)), will establish that the aperture field is undefined, and that the
reflection and transmission coefficients consequently do not, as expected, converge to zero.
As discussed in the following, the current status of this point of the project is therefore
not conclusive, and more work and time is needed to resolve the issue.

The practical implementation in matlab of the expression for the aperture field is
carried out by approximating the integral with a sum and by truncating this sum at some
finite value of the integration variable, s. This procedure is evidently critically dependent
on the integrand to converge to zero as s increases. To investigate this requirement,
the integral in Eq. (5.12) may be rewritten using the expression for the inner product
〈ψm̂(ρ̂), φl(s)〉L2 that was introduced in Eq. (E.43):∫ ∞

0
φl(x, s)(γ(s)− n0k0)〈ψm̂(ρ̂), φl(s)〉L2 ds

=
∫ ∞

0
φl(x, s)(γ(s)− n0k0){Gm̂,l(ρ̂)δ(ρ̂− s) +Hm̂,l(ρ̂, s)} ds

= Gm̂,l(ρ̂)φl(x, ρ̂)(γ(ρ̂)− n0k0) +
∫ ∞

0
φl(x, s)(γ(s)− n0k0)Hm̂,l(ρ̂, s) ds

≡ Gm̂,l(ρ̂)φl(x, ρ̂)(γ(ρ̂)− n0k0) +
∫ ∞

0
Jl(s) ds, (5.15)

with:

Jl(s) = φl(x, s)(γ(s)− n0k0)Hm̂,l(ρ̂, s). (5.16)

Jl(s) is also function of m̂ and ρ̂, but these dependences have been omitted in the
notation as they are of no significance for the following. As discussed above, the numerical
procedure for approximating the integrals is only valid if Jl(s) converges to zero as s
increases. Therefore, to illustrate the problem the real and imaginary parts of Jl(s) are
plotted with l = 1, x = 1µm, m̂ = 1, and ρ̂ = 1.5µm−1 in Fig. 5.4(a).
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Figure 5.4 Plots of first order results for illumination by radiation mode. The geometry
parameters are as in Fig. 5.3(a).

The plot shows that the integrand does not converge to zero as s increases, but rather it
oscillates. The choices of parameters (l, x, m̂, and ρ̂) are arbitrary, but investigations with
different values give the same conclusion: The integrand does not converge. This entails
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that the s-integral that defines the first order aperture field in Eq. (5.12) is divergent,
or put differently, that the aperture field is undefined, in contradiction with the very
well-defined physical problem of an incident radiation mode. Consequently, the treatment
of the reflection and transmission coefficients, derived directly from the aperture field, cf.
Eqs. (5.14), is expected to suffer from numerical problems as well. This is analyzed and
confirmed in the following.

In the expression for R(1)
m,m̂(ρ, ρ̂) in Eq. (E.60b), focus is put on the terms that do not

contain the Dirac delta function which are:

2∑
l=1

Wl(ρ) ≡
2∑
l=1
C

{
Gm̂,l(ρ̂)Hm,l(ρ, ρ̂)∗ [γ(ρ̂)− k0n0]

+Gm,l(ρ)∗Hm̂,l(ρ̂, ρ) [γ(ρ)− k0n0]

+
∫ ∞

0
Hm̂,l(ρ̂, s)Hm,l(ρ, s)∗ [γ(s)− k0n0] ds

}
, (5.17)

where again the dependence on m̂ and ρ̂ has been omitted. Using l = 1, x = 1µm, m̂ = 1,
and ρ̂ = 1.5µm−1, the real and imaginary parts of Wl(ρ) have been plotted in Fig. 5.4(b).
The plot illustrates that the reflection coefficient does not converge to zero, but rather it
oscillates, and since investigations with other choices of the parameters (l, x, m̂, and ρ̂)
yield the same oscillatory behavior, this is a general issue. Consequently, truncation of the
semi-infinite ρ-integral that defines the electric field in layer 1 (Eq. (5.9a)) is precluded,
entailing that the electric field is nowhere finite.

Due to the time limitations of the project, the above numerical problems have not
been resolved, but instead potential explanations are given in the following.

The results obtained for illumination by a guided mode (Section 5.2) did not exhibit
the same numerical problems since the reflection and transmission coefficients converged as
expected. Likewise, the electric field was continuous and differentiable across the interface
at z = 0 which establishes that the overlap integrals, 〈φl(s), U1〉L2 and 〈ψm(ρ), φl(s)〉L2 ,
that implicitly determine the field on either side of the interface (Eqs. (5.1) and (5.8))
have been derived and implemented correctly. Hence, mistakes in these, in particular
in 〈ψm(ρ), φl(s)〉L2 , are not likely to be responsible for the numerical problems in the
evaluation of Θ1,m̂(x, ρ̂).

Focus may instead be put on the derivation of the expression for the first order aperture
field, that is the result of a truncated Liouville-Neumann series solution to the Fredholm
equation of the second kind in Eqs. (5.11). As stated on p. 63, the series solution to
the integral equation is uniformly convergent when the conditions in [Baker, p. 35] are
fulfilled. Until this point, these conditions have been assumed satisfied, and the results
for illumination by the guided mode indicate that this assumption is valid. However, it
cannot be eliminated that the assumption fails for illumination by a radiation mode, and
that another procedure for solving the second order Fredholm equation in the aperture
field is called for.

The derivations and implementation in matlab have been thoroughly controlled, and
therefore these are unlikely to cause the problems, but it cannot be entirely left out of
suspicion.

The following section presents an outline for the calculation of the SER in an open
three-layer geometry. Due to the numerical problems encountered in this section, numerical
results for the SER are, however, not obtained.
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5.4 Spontaneous Emission Rate

Despite the numerical problems encountered in the evaluation of the reflection and
transmission coefficients due to an incident radiation mode, it is still relevant to outline a
procedure for obtaining the normalized SER in a multi-layered open geometry. Specifically,
this section will focus on obtaining the power emitted from a dipole and through that the
normalized SER in a geometry of three layers, as sketched in Fig. 5.5.
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Figure 5.5 Dipole, J, embedded in a waveguide layer, surrounded by uniform layers. The dipole
is placed at (x, z) = (0, 0).

Initially, it is recalled that the power emitted from a dipole essentially is the real part
of the electric field generated by the dipole at the position of the dipole, cf. Eq. (3.34).
Obtaining the normalized SER in the open geometry, as in the closed geometry, conse-
quently reduces to determining the electric field due to the dipole and the surrounding
optical environment. To this end, the field emitted upwards from the dipole at z = 0,
E↑(x, 0), represented as in Eq. (4.27), is expressed as:

E↑(x, 0) =
Ng∑
n=1
Ag
nUn(x) +

2∑
m=1

∫ ∞
0
Ar(ρ)ψm(x, ρ) dρ. (5.18)

To allow for a numerical treatment, a discretization of the integral term is desirable.
Transforming the integral into a sum, by the introduction of a sampling of the continuous
integration constant, ρ, produces a discretized expression for the electric field:

E↑(x, 0) '
Ng∑
n=1
Ag
nUn(x) +

2∑
m=1

Nr∑
n=1
Ar(ρn)ψm(x, ρn)∆ρn, (5.19)

where the integral over the radiation modes has been discretized into Nr sampling points
and truncated at the value ρNr . The distance between the sampling points, ∆ρn, is
assumed dependent on n to allow for non-equidistant sampling. The total number of
guided modes is, to generalize the outline, assumed equal to Ng such that the total
number of included modes is M = Ng + 2Nr. The modal amplitudes excited by the
dipole current are termed Ag

n and Ar(ρ) for the guided and radiation modes, respectively,
see Eq. (4.31). On symmetry grounds, excitations into m = 1th and m = 2nd radiation
mode are the same, and no distinction is made between these. To allow for a vectorial
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treatment, highly suitable in the numerical implementation, it is beneficial to define a
vector, E(x), containing the guided and sampled radiation modes, and a coefficient vector,
c↑(z), whose elements contain constants such that the dotproduct between c↑(0) and
E(x) equals E↑(x, 0):

E(x) =



U1(x)
...

UNg(x)
ψ1(x, ρ1)
ψ2(x, ρ1)

...
ψ1(x, ρNr)
ψ2(x, ρNr)


, c↑(0) =



Ag
1

...
Ag
Ng

Ar(ρ1)∆ρ1,
Ar(ρ1)∆ρ1,

...
Ar(ρNr)∆ρNr

Ar(ρNr)∆ρNr


. (5.20)

This vectorial representation allows treatment of the effects of propagation and reflection
to be conducted entirely in terms of the coefficient vector.

Focusing initially on the reduced system of the two upper layers (Fig. 5.5), the upwards
emitted field will eventually reflect at the interface between the waveguide layer and
the uniform layer. Propagation of the modes along z can be handled by a propagation
matrix, P, that is, a diagonal matrix with elements exp(−iβLz/2) where β denotes the
z-propagation constant appertaining to the relevant mode and Lz/2 the distance traveled
from the dipole to the interface. Consequently, the coefficient vector at the interface
before reflection, c↑(Lz/2), can be expressed as c↑(Lz/2) = Pc↑(0). The reflected and
downward propagating field directly after the interface is given by the following coefficient
vector:

c↓(Lz/2) = R2,3c
↑(Lz/2), (5.21)

where R2,3 is a matrix that describes reflection at the interface between layers 2 and 3,
similar to the reflection matrices introduced in the closed geometry approach.

In the following, to simplify matters and in accordance with the analysis in the previous
section, a single guided mode is assumed. Applying the same discretization as earlier, an
arbitrary mode is expected to couple to M modes at the interface, that is, to itself and
the M − 1 other modes. Specifically, the guided mode, U1(x), is expected to reflect back
into itself, but also into the 2Nr sampled radiation modes, described by the coefficients
R1 and R(ρn), respectively. Similarly, a sampled radiation mode, ψm̂(x, ρj), is expected
to couple to the guided mode and the radiation modes through the coefficients Rm̂(ρn)
and Rm,m̂(ρn, ρj), respectively. Further, due to the discretization of the integral, a factor
∆ρn must be included in the matrix treatment of the radiation mode integrals. Following
this discussion, the composition of the reflection matrix can be outlined as:

R2,3 =

1 Ng M


1

Guided to guided Radiation to guided
Ng

Guided to radiation Radiation to radiation
M

. (5.22)
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Explicit expressions for the elements in the above matrix in terms of the reflection
coefficients R1, R(ρn), Rm̂(ρn) and Rm,m̂(ρn, ρj) are extensive and are therefore omitted,
due to the conspectus-approach of this section. However, it is stressed that special
care must be taken concerning all diagonal elements of the lower right quadrant since
these contain coefficients with Dirac delta functions with zero-arguments. The integral
discretization width, ∆ρn, should not be multiplied to these terms due to the property of
the Dirac delta function (Eq. (4.16)). Finally, the reflection matrix R2,1 is identical to
the reflection matrix R2,3 due to the symmetry of the setup.

Having discretized the otherwise continuous field and outlined a procedure for obtaining
a reflection matrix, the matter of determining the intra-waveguide field can be carried
out in a similar manner to that in the closed geometry (Appendix C.7). Having obtained
this field, computation of the emitted power by use of Eq. (3.34), and through that the
normalized SER, is possible.

Having outlined a method for obtaining the normalized SER, it is relevant to compare
the present theoretical procedure to that used in the closed geometry. Once again, a
discretization is necessary to handle the different contributions, a situation highly akin
to the closed geometry, and in this context it is natural to question if the treatment of
the mathematically more advanced open geometry has been useful. However, a defining
and decisive difference between the closed and open geometry approaches is the freedom
of choice concerning the sampling of the radiation modes in the open geometry. The
θ-discretization, introduced in Section 4.6, or a similar discretization could, seen in the
light of the converging results obtained for the open single-layer geometries, conveniently
be applied, with well-founded expectations for rapid convergence.

Finally, looking forward, it is noted that the theory presented in this section can
be expanded to include more complex structures with multiple layers by use of the
scattering matrix formalism, introduced in Section 3.6. Application of the scattering
matrix formalism is only reliant on knowledge of the reflection and transmission matrices
at interfaces. Determining the field inside, e.g. a microcavity is then essentially a matter
of applying scattering reflection matrices rather than ordinary reflection matrices. Again,
high expectations for rapid convergence are reasonable, based on the results obtained
with the θ-discretization in Section 4.6.

5.5 Summary

This chapter has presented the theory necessary to describe a two-layered open geometry,
namely a geometry modeling an abruptly terminated waveguide with low index contrast
and core width, and the results obtained from the theoretical approach. The eigenmodes
in the open geometry were presented in the previous chapter, and the present chapter
has consequently focused on the effects introduced due to the interface between the two
layers.

The interface effects were dependent on the type of incident mode, and firstly an
incident guided mode was examined. A Fredholm equation of the second kind for the
aperture field was presented, and definitions of reflection and transmission coefficients,
essentially given as the projections of the aperture field onto the eigenmodes of each layer,
were presented. Following this, a procedure for obtaining approximate solutions was
discussed, involving the application of a truncated Liouville-Neumann series. Application
of the truncated Liouville-Neumann series to the first order yielded approximate expres-
sions for the aperture field and from this approximate expressions for the reflection and
transmission coefficients. Next, results for these first order reflection and transmission
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coefficients were presented which were in agreement with qualitative expectations. By
combining the results from the treatment of an incident guided mode, a first order field
profile of an open two-layer geometry was presented. This field profile clearly showcased
that issues of parasitic reflections, observed in the closed geometry, are avoided in the
open geometry.

Thereafter, treatment of an incident radiation mode was initiated. Similar to the case
of an incident guided mode, a Fredholm equation of the second kind was presented, and
approximate first order solutions for the aperture field and reflection and transmission
coefficients were given. Numerical investigations displayed that these expressions did not
converge as expected.

Lastly, a procedure for determination of the normalized SER in multi-layered open
geometries was outlined. The procedure essentially relied on a discretization of the
continuous radiation mode propagation constants and on the scattering matrix formalism,
introduced for the closed geometry.





Chapter 6
Conclusion

The work presented in this bachelor thesis has investigated two methods for modeling and
simulating the electric field inside various optical environments in dielectric slab structures.
In the first method, the closed geometry approach, the solution domain is given finite
dimensions, and the electric field is forced to vanish outside this simulation domain. In
the second method, the open geometry approach, the solution domain is given infinite
dimensions, and the field is consequently nowhere forced to vanish. The overall aim of
the project has been to determine to what extent the mathematically more advanced
open geometry approach produces more accurate results than the mathematically simpler
closed geometry approach.

Specifically, the two approaches have been compared qualitatively by comparison of
the electric field profiles, and quantitatively by computation of the normalized SER due to
a dipole current source. Comparison of the results from the two approaches indicates how
optical structures may potentially be modeled more accurately with the open geometry
approach. The results and findings of this thesis may therefore contribute to the future
theoretical simulations of nano-photonic structures.

As discussed in the following paragraphs, it has been demonstrated that the open
geometry approach yields more reliable results for the electric field and for the normalized
SER. This can mainly be attributed to the treatment of the radiation modes in the open
geometry approach.

Using the closed geometry approach, the electric field was required to vanish outside
the slab structure which cast the scalar Helmholtz equation and the corresponding BCs
on the form of an ordinary and standardized PDE problem. Having determined the
discrete eigenmodes of this PDE problem in each layer in the geometry, the electric field
was expanded on these eigenmodes throughout the geometry using eigenmode expansion
technique and the scattering matrix formalism. This formalism and the corresponding
expansion of the electric field can, in principle, be carried out for any arbitrary step-index
profile, and the versatility of this tool was applied to plot the field profile in a number of
step-index profiles. Even though the tool is limited to step-index profiles, it can nonetheless
be used to approximate arbitrary geometries by application of a staircase-approximation.

The field profiles from the closed geometry constituted qualitatively good results, but
the assumption of perfectly conducting boundaries, necessary to confine the field to a
domain of finite dimensions, introduced parasitic reflections in the field profiles, visible
as interference effects. The closed geometry, with its perfectly conducting boundaries,
represents a box enclosed by metal, and the field and corresponding parasitic reflections
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very well represent this. However, the slab structures of interest are not enclosed by
metal, and these parasitic reflections in the simulations are consequently undesirable.

The power emitted from the dipole current source was argued to be an equivalent
quantity to the normalized SER, and it was shown that this power was given as the real
part of the electric field due to the dipole evaluated at the point of the dipole. Therefore,
the presence of parasitic reflections in the closed geometry inescapably affected the SER
results.

The overall and unsatisfactory picture of the results was that the normalized SER did
not converge as the width of the structure was increased, and the relative fluctuations
of the normalized SER in different single- and three-layer closed geometries were in the
range from 8% to 26%. The fluctuations decreased slightly as the width of the geometry
was increased which could be explained by the aforementioned field profiles: Increasing
the width, the relative effect from the parasitic reflections in the point of the dipole
current source diminished, and hence a more correct electric field was obtained. However,
increasing the width of the geometry necessitates inclusion of additional eigenmodes, and
at this price the small decrease in the variations of the SER was unsatisfactory.

In conclusion, the SER from the dipole current source could not be determined satis-
factorily accurate using the closed geometry approach, and this therefore motivated the
introduction of the open geometry approach.

The treatment of the open geometry approach was split into two chapters. The first
of these, Chapter 4, presented an open single-layer geometry, and the PDE for the electric
field to be solved was identical to that in the closed geometry. However, the infinite
width of the structure removed the outer BCs that ensured vanishing of the field at
the boundaries in the closed geometry. The mathematical treatment of this involved
introduction of a new normalization procedure and of more distinct mode types, compared
to the closed geometry. Specifically, the infinite width of the structure entailed a clear
segregation of the radiation modes and the guided modes, as a finite number of guided
modes and a continuum of radiation modes existed, in contrast to the discrete set of
eigenmodes in the closed geometry.

Expressions for the SER from a dipole current source in the open single-layer geometry
were derived, and due to the continuum of radiation modes these contained integrals over
the continuous radiation mode propagation constants. In general, the practical evaluation
of these integrals had to be carried out numerically which called for a discretization of the
propagation constants. The results for the SER, as function of the degree of discretization,
converged uniformly, contrary to the corresponding results in the closed geometry. Using a
non-equidistant discretization, uniform convergence and relative errors of less than 1% was
attained with 24 and 7 sampling points for a uniform and a waveguide layer, respectively.
These results therefore gave a first and important contribution to the assessment of the
open geometry approach compared to the closed geometry approach: The SER due to
the dipole may be determined accurately using the open geometry approach.

Finally, Chapter 5 presented the formalism for analyzing a two-layered open geometry
consisting of a waveguide layer and a uniform layer. The further treatment of this open
geometry was split into two cases, namely those of illumination by a guided mode and
illumination by a radiation mode. In both situations, the fields on either side of the
interface between the layers were defined, expressed in terms of eigenmodes and reflection
and transmission coefficients. Applying the demand for continuity and differentiability
of the field at the interface and the orthonormality and completeness relations for the
guided and radiation modes further led to expressions for the reflection and transmission
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coefficients and Fredholm integral equations of the second kind in the aperture fields.
Despite the integral equations being of the same type in both of the aforementioned

cases, the numerical results were only as expected for the case of illumination by a
guided mode: The reflection and transmission coefficients subsided as functions of the
respective propagation constants, as expected, and the field profile did not suffer from the
parasitic reflections observed in the closed geometry. The same formalism was derived
for illumination by a radiation mode, but the numerical results were not as expected:
The aperture field was undefined, and the reflection and transmission coefficients did not
converge to zero for increasing values of the propagation constants. Consequently, no
meaningful field profile could be produced.

Lastly, an outline for the calculation of the normalized SER in an open three-layered
geometry was presented, and if the numerical problems for the illumination by a radiation
mode are resolved, the computation of the normalized SER in this structure is straight-
forward.

In conclusion, the outcome of this thesis is a formalism that allows a precise determina-
tion of the normalized SER using the open geometry approach. Furthermore, it has been
documented that the open geometry approach represents a considerable improvement in
the modeling of slab structures.





Appendix A
Nomenclature and Acronyms

This chapter contains an overview of nomenclature and acronyms, starting with an
overview of nomenclature.

A.1 Nomenclature

The four tables below list the used symbols, and each table display the symbols introduced
in either of the four chapters. Finally, each table is arranged alphabetically with respect
to the first column. Symbols used in several chapters are not reintroduced if they are
already contained in a previous table.

Chapter 2
Meaning Symbol
Angular frequency ω
Cartesian x-component of electric field Ex
Cartesian x-component of magnetic field Hx

Electric displacement field D
Electric field E
Electric susceptibility χe
Free charge density ρf
Free current density Jf
Free space propagation constant k0
Magnetic H-field H
Magnetic field B
Permeability µ
Permittivity ε
Refractive index n
Relative permittivity εr
Vacuum permeability µ0
Vacuum permittivity ε0
x-dependent eigenmodes ex, ex,j
x-propagation constant κ, κj
z-dependent eigenmodes ez, ez,j
z-propagation constant β, βj
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Chapter 3
Meaning Symbol
Current density due to current source J
Effective reflection and propagation matrices Rbot, Rtop
Electric field along positive and negative z direction E↑, E↓
Set of imaginary numbers I
Layer number (along z) {q}
Modal amplitudes Aj , Bj
Mode contribution vectors to electric field ε↑, ε↓
Non-normalized x-eigenmode ěj
Normalization constant with Power inner product Nj
Normalized x-eigenmode ej
Normalized spontaneous emission rate α
Number of zones in some layer P
Power emitted from current source in bulk material P0
Power emitted from current source in bulk material P
Power inner product 〈·, ·〉p, N ′j
Power ratio deviation δα
Reflection matrix from layer q to q + 1 Rq,q+1
Repetition length for power ratio (closed geometry) δLx
Scattering reflection matrix from layer q to r SRq,r

Scattering transmission matrix from layer q to r STq,r

Spontaneous emission rate γ
Spontaneous emission rate in bulk material γ0
Transmission matrix from layer q to q + 1 Tq,q+1
Width of waveguide Dg

x-coordinate of interface between the p and p+ 1th zone Lp,p+1
x-width of closed geometry Lx
z-coordinate of interface between the q and q + 1th layer zq,q+1
Zone number (along x) [p]
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Chapter 4
Meaning Symbol
Angular mode spacing θ
Integrand in power expression from radiation modes Γm
L2(R) inner product 〈·, ·〉L2

Modal amplitudes Al(s), Bm(ρ)
Mode discretization step ∆s
Normalization constant with L2(R) inner product NL2

Number of subintervals in numerical integration #
Power contribution from guided modes Pg
Power contribution from radiation modes Pr
Repetition length Lrep
Scattering contribution to radiation mode (non-normalized) ξ̌m
Uniform layer radiation mode (non-normalized) φ̌l
Uniform layer radiation mode (normalized) φl
Uniform layer x-propagation constant s
Uniform layer z-propagation constant γ

Waveguide layer guided mode (non-normalized) Ǔj
Waveguide layer guided mode (normalized) Uj

Waveguide layer guided mode x-propagation constant h
[1,3]
j , h[2]

j

Waveguide layer guided mode z-propagation constant βj
Waveguide layer radiation mode (non-normalized) ψ̌m
Waveguide layer radiation mode (normalized) ψm
Waveguide layer radiation mode x-propagation constant ρ, ρco
Waveguide layer radiation mode z-propagation constant β
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Chapter 5
Meaning Symbol
Aperture field due to incident radiation mode Θm̂(x, ρ̂)
Aperture field due to incident guided mode Φ(x)
Coefficient vector c↑(z), c↓(z)
Dirac delta prefactor in 〈ψm(ρ), φl(s)〉L2 Gm,l(ρ)
Effective reflection matrices for guided and radiation modes R2,3, R2,1
Electric field in layer 1 due to incident guided mode E1(x, z)
Electric field in layer 1 due to incident radiation mode E1(x, z)
Electric field in layer 2 due to incident guided mode E2(x, z)
Electric field in layer 2 due to incident radiation mode E2(x, z)
First order aperture field due to incident guided mode Φ1(x)
First order aperture field due to incident radiation mode Θ1,m̂(x, ρ̂)
First order coefficients with superscript (1)

Guided and sampled radiation mode vector E(x)
Incident radiation mode ψm̂(x, ρ̂)
Index contrast ∆n
Integral prefactor in Fredholm equations of the second kind λ
Integrand for aperture field Θ1,m̂, see Eq. (5.16) Jl(s)
jth term in the Liouville-Neumann series solution Cj(x)
Kernel in Fredholm equation, see Eq. (5.3d) K(x, x′)
Kernel in Fredholm equation, see Eq. (5.11c) K(x, x′)
Non-Dirac delta terms in 〈ψm(ρ), φl(s)〉L2 Hm,l(ρ, s)
Non-Dirac delta terms in Rm,m̂(ρ, ρ̂), see Eq. (5.17) Wl(ρ)
Number of constituting modes in discrete treatment M
Number of guided modes Ng
Number of sampled radiation modes Nr
Reflection from guided mode to guided mode R1
Reflection from guided mode to waveguide radiation modes R(ρ)
Reflection from radiation mode to guided mode R1,m̂(ρ̂)
Reflection from radiation mode to waveguide radiation modes Rm,m̂(ρ, ρ̂)
Refractive index in uniform layer n0
Refractive index of cladding region n1
Refractive index of core region n2
Sampling distance between radiation modes ∆ρn
Transmission from guided mode to uniform layer radiation modes T (s)
Transmission from radiation mode to uniform layer radiation modes Tl,m̂(s, ρ̂)
Zeroth order aperture field due to incident guided mode Φ0(x)
Zeroth order aperture field due to incident radiation mode Θ0,m̂(x, ρ̂)
z-length of waveguide region in three-layer SER treatment Lz
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A.2 Acronyms

The acronyms used in this report are stated below, arranged alphabetically, and apply to
all chapters.

Meaning Acronym
Electromagnetic wave EW
Transverse electric TE
Transverse magnetic TM
Transerve electromagnetic TEM
Sturm-Liouville SL
Partial differential equation PDE
Ordinary differential equation ODE
Spontaneous emission rate SER





Appendix B
Chapter 2

B.1 Product Solution for Helmholtz Equation

In this section, it is verified that the product solution defined in Eqs. (2.11) and (2.14)
fulfills the scalar Helmholtz equation in Eq. (2.10). Firstly, the product solution is written
out explicitly for an arbitrary j:

Ey(x, z) = ex,j(x)ez,j(z) =
(
ajeiκjx + bje−iκjx

) (
c1,jeiβjz + c2,je−iβjz

)
. (B.1)

This expression is inserted into the left hand side of Eq. (2.10):

∇2Ey + n2k2
0Ey = d2Ey

dx2 + d2Ey
dz2 + n2k2

0Ey

=
[
−
(
κ2
j + β2

j

) (
ajeiκjx + bje−iκjx

) (
c1,jeiβjz + c2,je−iβjz

)]
+
[
n2k2

0
(
ajeiκjx + bje−iκjx

) (
c1,jeiβjz + c2,je−iβjz

)]
=
[
−
(
κ2
j + β2

j

)
+ n2k2

0
] [(

ajeiκjx + bje−iκjx
) (
c1,jeiβjz + c2,je−iβjz

)]
= 0, (B.2)

where the last equal sign follows from the definition of κj in Eq. (2.13a). Hence, the
product solution satisfies the scalar Helmholtz equation.
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Appendix C
Chapter 3

C.1 Boundary Condition Matrix

This appendix introduces the boundary condition matrix necessary to determine the
eigenmodes in an arbitrary zone-configuration. The boundary condition matrix along
with the definition of the eigenmode-form, to be introduced shortly, uniquely determines
the allowed modes in a layer.

The structure of the zone-solutions, e[p]
x,j(x), and the BCs can be exploited to obtain a

matrix that allows determination of the allowed eigenmodes. Referring to Eq. (2.14a),
the structure of e[p]

x,j(x) is:

e
[p]
x,j(x) = ã

[p]
j exp(iκ[p]

j x) + b̃
[p]
j exp(−iκ[p]

j x), (C.1)

where ã[p]
j and b̃[p]j are the complex coefficients determining the amplitudes of the forward

and backward propagating parts of the eigenmode, respectively. An eigenmode, ex,j(x),
is then given as the piecewise function of the zone-solutions in Eq. (C.1).

In the case of κ[p]
j ∈ I (set of imaginary numbers), the otherwise harmonic waves become

exponentially in- or decreasing functions. Since the values of e[p]
x,j(x) must be reasonable

in the interval Lp−1,p ≤ x ≤ Lp,p+1 to ensure numerical stability, the coefficients ã[p]
j

and b̃
[p]
j risk assuming either very small or very large numerical values. The problem

is circumvented by defining the exponential functions relative to the appropriate zone
boundaries:

e
[p]
x,j(x) = a

[p]
j exp(iκ[p]

j (x− Lp−1,p)) + b
[p]
j exp(−iκ[p]

j (x− Lp,p+1)) (C.2)

where L0,1 ≡ 0 and LP,P+1 ≡ Lx, and where a[p]
j and b

[p]
j are new coefficients.

Combining the inner and outer BCs from Eqs. (3.1) and (3.2) with the zone-solutions
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in Eq. (C.2), the following 2P equations for each j are obtained:

a
[1]
j + b

[1]
j eiκ

[1]
j
L1,2 = 0, (C.3a)

...

a
[p]
j eiκ

[p]
j

(Lp,p+1−Lp−1,p) + b
[p]
j = a

[p+1]
j + b

[p+1]
j e−iκ

[p+1]
j

(Lp,p+1−Lp+1,p+2), (C.3b)

a
[p]
j κ

[p]
j eiκ

[p]
j

(Lp,p+1−Lp−1,p) − b[p]j κ
[p]
j = a

[p+1]
j κ

[p+1]
j − b[p+1]

j κ
[p+1]
j e−iκ

[p+1]
j

(Lp,p+1−Lp+1,p+2),

(C.3c)
...

a
[P ]
j eiκ

[P ]
j

(Lx−LP−1,P ) + b
[P ]
j = 0, (C.3d)

where p = 1, 2, . . . , P − 1. Eqs. (C.3) form a homogeneous system of linear equations in
a

[1]
j , b

[1]
j , a

[2]
j , b

[2]
j , . . . , a

[P ]
j , b

[P ]
j , that can be written as a matrix equation:

Ajcj = 0, (C.4)

where cj contains the coefficients:

cj =
[
a

[1]
j , b

[1]
j , a

[2]
j , b

[2]
j , . . . , a

[P ]
j , b

[P ]
j

]T
. (C.5)

The boundary condition matrix, Aj , is:

1 eiκ
[1]
j
L1,2

eiκ
[1]
j
L1,2 1 −1 −e−iκ

[2]
j

(L1,2−L2,3)

κ
[1]
j eiκ

[1]
j
L1,2 −κ[1]

j −κ[2]
j κ

[2]
j e−iκ

[2]
j

(L1,2−L2,3)

. . . . . . . . . . . .

eiκ
[P−1]
j

(LP−1,P−LP−2,P−1) 1 −1 −e−iκ
[P ]
j

(LP−1,P−Lx)

κ
[P−1]
j eiκ

[P−1]
j

(LP−1,P−LP−2,P−1) −κ[P−1]
j −κ[P ]

j κ
[P ]
j e−iκ

[P ]
j

(LP−1,P−Lx)

eiκ
[P ]
j

(Lx−LP−1,P ) 1


.

(C.6)

The square matrix Aj contains the factors to the coefficients in Eqs. (C.3) and hence all
the available information about the jth eigenmode and the BCs. The matrix is of central
importance in the determination of eigenmodes, as discussed in Section 3.2.

C.2 Normalization with Power Inner Product

In this section, the power inner product, defined in Eq. (3.5), is expressed explicitly in
terms of the electric x-eigenmodes. First, the vectorial electric and magnetic eigenmodes,
ej and hj , are defined: The (x, y, z)-components of the vectors contain the electric and
magnetic polarization contributions in the (x, y, z)-direction, respectively. Consequently,
since the electric field is assumed to be polarized along y, the ej(x) vector can be written
as:

ej(x) ≡

(ej(x))x
(ej(x))y
(ej(x))z

 =

 0
ex,j(x)

0

 , (C.7)



C.3. THREE-LAYER STRUCTURE: SCATTERING MATRICES 91

where ex,j(x) are the eigenmodes determined in Section 3.2. The integrand in the Power
inner product can now be written out explicitly:

(ej(x)× h∗i (x)) · ẑ = (ej(x)× h∗i (x))z
= (ej(x))x(h∗i (x))y − (ej(x))y(h∗i (x))x
= −(ej(x))y(h∗i (x))x. (C.8)

From Eq. (2.9), the x-component of the H-field is related to the y-component of the
E-field through:

Hx,i = − 1
iωµ0

∂Ey,i
∂z

. (C.9)

Assuming in the following that Ey,i consists only of a forward propagating part along z,
this gives:

Hx,i = − 1
iωµ0

∂

∂z
(ex,i(x) exp(iβiz)) = − βi

ωµ0
ex,i(x) exp(iβiz). (C.10)

Defining Hx,i ≡ (hi(x))x exp(iβiz) then produces:

(hi(x))x = − βi
ωµ0

ex,i(x). (C.11)

The same result is obtained for a backward propagating Ey,i, if ẑ in Eq. (C.8) is exchanged
with −ẑ due to the reversed propagation direction. Insertion into the expression in
Eq. (C.8) and integration over x then gives:

〈ej , ei〉p = 1
2

∫ Lx

0
ex,j(x)

(
βi
ωµ0

ex,i(x)
)∗

dx

= β∗i
2ωµ0

∫ Lx

0
ex,j(x)ex,i(x)∗dx. (C.12)

C.3 Three-Layer Structure: Scattering Matrices

In this section, the scattering matrices SR1,3 and ST1,3 for a three-layer structure,
introduced in Section 3.6, are derived. The derivations rely heavily on the illustration in
Fig. 3.9(b) since each term in the following expressions can be traced directly by tracing
the back- and forward-propagating fields in the second layer.

The scattering reflection matrix SR1,3 can be expressed by adding the different
contributions to the reflection at the first interface, namely the initial reflection due to
R1,2 and the contributions due to transmission of the backwards propagating circulating
field in the second layer:

SR1,3 =R1,2 + T2,1P2R2,3P2T1,2︸ ︷︷ ︸
First contribution from

circulating field

+ (T2,1P2R2,3P2)R2,1P2R2,3P2T1,2︸ ︷︷ ︸
Second contribution from circulating field

+ (T2,1P2R2,3P2)(R2,1P2R2,3P2)R2,1P2R2,3P2T1,2︸ ︷︷ ︸
Third contribution from circulating field

+ . . . . (C.13)
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Rewriting this expression slightly reveals a geometric matrix-series of the form
∑∞
j=0 Mj ,

with the sum (I−M)−1:

SR1,3 = R1,2 + T2,1P2R2,3P2

{
I + R2,1P2R2,3P2

+ R2,1P2R2,3P2R2,1P2R2,3P2 + . . .
}

T1,2

= R1,2 + T2,1P2R2,3P2

 ∞∑
j=0

(R2,1P2R2,3P2)j
T1,2

= R1,2 + T2,1P2R2,3P2
(
I−R2,1P2R2,3P2

)−1T1,2. (C.14)

A similar procedure can be used for the scattering transmission matrix ST1,3, by consid-
ering the transmission contributions due to both direct transmission through the first and
second layer and due to transmission of the forward circulating field in the second layer:

ST1,3 = T2,3P2

 ∞∑
j=0

(R2,1P2R2,3P2)j
T1,2

= T2,3P2
(
I−R2,1P2R2,3P2

)−1T1,2. (C.15)

The derivations of the matrices SR3,1 and ST3,1 follow the same pattern, and the results
are stated below:

SR3,1 = R3,2 + T2,3P2R2,1P2
(
I−R2,3P2R2,1P2

)−1T3,2 (C.16a)

ST3,1 = T2,1P2
(
I−R2,3P2R2,1P2

)−1T3,2 (C.16b)

C.4 Three-Layer Structure: Coefficients in Second Layer

In this section, the coefficient vectors in the second layer, introduced in Section 3.6,
A{2} and B{2}, in a general three layer structure are derived. A{2} contains the field
coefficients for the forward propagating part of the field at the first interface (z1,2), while
B{2} contains the field coefficients for the backward propagating part of the field at the
second interface (z2,3).

The vectors can be determined in a manner similar to that in the derivation of the
scattering matrices (Appendix C.3), that is, by accounting for the multiple circulations of
the field, and the results are:

A{2} =
∞∑
j=0

(R2,1P2R2,3P2)j T1,2Ã
{1} +

∞∑
j=0

(R2,1P2R2,3P2)j R2,1P2T3,2B̃
{3}

=
∞∑
j=0

(R2,1P2R2,3P2)j
(
T1,2Ã

{1} + R2,1P2T3,2B̃
{3})

= (I−R2,1P2R2,3P2)−1
(
T1,2Ã

{1} + R2,1P2T3,2B̃
{3})

, (C.17a)
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B{2} =
∞∑
j=0

(R2,3P2R2,1P2)j R2,3P2T1,2Ã
{1} +

∞∑
j=0

(R2,3P2R2,1P2)j T3,2B̃
{3}

=
∞∑
j=0

(R2,3P2R2,1P2)j
(
R2,3P2T1,2ÃI + T3,2B̃

{3})
= (I−R2,3P2R2,1P2)−1

(
R2,3P2T1,2Ã

{1} + T3,2B̃
{3})

. (C.17b)

C.5 Multi-Layer Structure: Inner Field Coefficients

This appendix derives the expansion coefficient vectors for the qth layer, A{q} and B{q},
in a structure of Q layers as introduced in the subsection about the multi-layer structure
in Section 3.6.

Assuming knowledge of the scattering matrices SRq,1, SRq,Q, ST1,q and STQ,q, the
field coefficients in the qth layer are desired. Observing Fig. C.1, it is seen that the
problem of obtaining these coefficients largely corresponds to the problem of obtaining
the inner coefficients in a three layer structure. The difference is that the transmission
and reflection matrices that govern the inner field coefficients in the case of a three layer
structure are replaced by scattering transmission and reflection matrices.

z

SRq,Q

STQ,q

SRq,1

ST1,q

{1} {q} {Q}

zq−1,q zq,q+1

. . . . . .

Figure C.1 Illustration of the relevant scattering transmission and reflection matrices, necessary
to describe the field coefficients in the qth layer.

Using therefore the expression in Eqs. (C.17), and substituting Rj,k y SRj,k, Tj,k y
STj,k, 2 y q, and 3 y Q, the following expressions are obtained:

A{q} = (I− SRq,1PqSRq,QPq)−1
(
ST1,qÃ

{1} + SRq,1PqSTQ,qB̃
{Q})

,

B{q} = (I− SRq,QPqSRq,1Pq)−1
(
SRq,QPqST1,qÃ

{1} + STQ,qB̃
{Q})

.
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C.6 Multi-Layer Structure: Scattering Matrices from Q to q − 1

The derivations of the scattering matrices follow the procedure outlined in Appendix C.3.
Hence, their expressions are merely stated:

SRq−1,Q = Rq−1,q + Tq,q−1PqSRq,QPq (I−Rq,q−1PqSRq,QPq)−1 Tq−1,q, (C.19a)
SRQ,q−1 = SRQ,q + STq,QPqRq,q−1Pq (I− SRq,QPqRq,q−1Pq)−1 STQ,q, (C.19b)
STq−1,Q = STq,QPq (I−Rq,q−1PqSRq,QPq)−1 Tq−1,q, (C.19c)
STQ,q−1 = Tq,q−1Pq (I− SRq,QPqRq,q−1Pq)−1 STQ,q. (C.19d)

C.7 SER Reflections in Three-Layer Structure

The electric field in the dipole layer in a three layer closed geometry is implicitly given
through the mode contribution vectors, ε↑ and ε↓, as described in Section 3.8. This section
contains a derivation of expressions for these vectors. Reference is made to Fig. 3.17 for a
schematic representation of the three layer geometry.

Firstly, it must be defined in which point the electric field is sought. Strictly, the
point cannot be z = 0 because the dipole is situated at z = 0. However, this point can
be approached arbitrarily close from either the positive or the negative direction. In the
following, the point of evaluation is chosen as z = 0+, that is, z = 0 approached from
positive z-values.

The first type of contributions to ε↑, ε↑+, comes from the part of the field that is
initially radiated along the positive z-direction. Since the point of evaluation is placed at
z = 0+, the first contribution to ε↑+ is given as the field initially radiated outwards from
the dipole, given by the modal amplitudes in Eq. (3.35), A. The second contribution to
ε↑+ comes from the part of the field that has been propagated from z = 0+ to the interface
between layers 2 and 3, reflected at this interface, propagated back to the interface
between layers 2 and 1, reflected at this interface, and propagated back to z = 0+. The
third contribution comes from the part of the field that makes the round trip twice, the
fourth contribution makes the round trip three times etc. In total, this yields:

ε↑+ = A+ (PR2,1PPR2,3P)A+ (PR2,1PPR2,3P)2A+ . . .

=
∞∑
j=0

(PR2,1PPR2,3P)jA

≡
∞∑
j=0

(RbotRtop)jA, (C.20)

with the following definitions:

Rbot ≡ PR2,1P, (C.21a)
Rtop ≡ PR2,3P, (C.21b)

where R2,1 and R2,3 are the reflection matrices for reflection from layer 2 to layer 1 and
from layer 2 to layer 3, respectively, see Section 3.6. P denotes a propagation matrix,
that handles the phase-shift involved in propagation of a distance Lz/2. In similarity
with the previously defined Pq matrices from Eq. (3.24) (that handled propagation across
an entire layer), the elements of the propagation matrix, P, are defined as:

Pj,k = δjk exp(iβjLz/2). (C.22)
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It is noted that the matrix can also be written by use of the layer propagation matrices
defined in Eq. (3.24) as: P = P1/2

2 .
The second type of contributions to ε↑, ε↑−, comes from the part of the field that is

initially radiated along the negative z-direction. Since the point of evaluation equals
z = 0+, the first contribution to ε↑− is not A, as it was for ε↑+, since the downwards
radiated field comes into existence at z = 0−. In turn, the first contribution is the part of
the field that has been propagated from z = 0− to the interface between layers 1 and 2,
reflected at this interface and propagated back to z = 0+. The second contribution is the
same as the first contribution, but includes the effects of one additional round trip. The
third contribution makes two additional round trips etc. Hence:

ε↑− = RbotA+ (RbotRtopRbot)A+ (RbotRtop)2RbotA . . .

=
∞∑
j=0

(RbotRtop)jRbotA. (C.23)

The contribution vector ε↑ is then given as the sum of ε↑+ and ε↑−:

ε↑ ≡ ε↑+ + ε↑− =
∞∑
j=0

(RbotRtop)jA+
∞∑
j=0

(RbotRtop)jRbotA

=
∞∑
j=0

(RbotRtop)j(I + Rbot)A

= (I−RbotRtop)−1(I + Rbot)A. (C.24)

Following the same procedure, ε↓ is determined, and the resulting expressions are
stated below:

ε↓ ≡ ε↓+ + ε↓− =
∞∑
j=0

(RtopRbot)jRtopA+
∞∑
j=1

(RtopRbot)jA

=
∞∑
j=0

(RtopRbot)j(Rtop + I)A−A

= (I−RtopRbot)−1(Rtop + I)A−A
= (I−RtopRbot)−1(Rtop + I− (I−RtopRbot))A
= (I−RtopRbot)−1Rtop(I + Rbot)A. (C.25)

Finally, it is noted that choosing to evaluate the field in z = 0− rather than in z = 0+

would produce the same results, due to the point-symmetry of the current distribution.

C.8 Convergence Studies for SER Calculations in Three-Layer
Structure

This appendix examines the convergence of the power emitted from a dipole in a closed
three-layer geometry. This power is given by Eq. (3.46), and convergence is examined
with respect to N , the number of included modes.

The convergence studies are carried out for the Lx-range given in Eq. (3.47). In
principle, the number of modes should be determined for all values of Lx in Eq. (3.47),
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but this procedure is from a computational point of view utopian. Instead, it will be
used that the largest number of modes is needed for the largest value of Lx, namely
Lx = 30µm. The power ratio, α, is determined for the following values of N :

N ∈ [50, 55, . . . , 250]. (C.26)

To examine the convergence in different ng-scenarios, four ng-values are investigated,
specifically ng = 1.1, 1.5, 2.0, 2.5. The plot of the appertaining power ratios as functions
of the number of modes can be seen in Fig. C.2.

50 90 130 170 210 250

0.4

0.6

0.8

1

1.2

1.4

N

α

 

 

ng = 1.1
ng = 1.5
ng = 2.0
ng = 2.5

Figure C.2 Convergence study for the number of modes, N , to be included in calculating the
power ratio, α, in the three-layer geometry. The refractive index in the guide in the second layer
is a parameter.

Finally, the smallest value of N ensuring that the power ratio, for any ng, deviates
less than δα = 10−3 from a ”true” value, is determined. Since no true value is known, the
”true” value will be defined as α calculated with 250 modes. The minimum N is therefore
determined as:

N = max
i

(
min
Ni

(
|αi(Ni)− αi(250)| < 10−3)) , i = 1, 2, 3, 4, (C.27)

where the values of i correspond to the four values of ng. The choice of δα is arbitrary,
but using the knowledge from the results from the single-layer geometries (p. 34-36), an
error on α that is less than one permille is acceptable. Applying the procedure outlined
in Eq. (C.27) to the results in Fig. C.2 gives:

N = 85. (C.28)

Hence, it is estimated that satisfactory convergence should be obtained for N ≥ 85 in the
Lx-range defined in Eq. (3.47) when ng is within the range [1.1, 2.5].
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Chapter 4

D.1 Boundary Condition Matrices

The BC-matrix for the jth guided mode in the open waveguide layer, defined in Section 4.2,
is:

Aj =


1 − exp(−ih[2]

j D) −1 0
−h[1]

j h
[2]
j exp(−ih[2]

j D) −h[2]
j 0

0 1 exp(ih[2]
j D) −1

0 −h[2]
j h

[2]
j exp(ih[2]

j D) −h[3]
j

 . (D.1)

The BC-matrix for the radiation mode with x propagation constant ρ in the open
waveguide layer, defined in Section 4.2, is:

A(ρ) =


eiρD2 e−iρD2 −eiρco

D
2 −e−iρco

D
2 0 0

−ρeiρD2 ρe−iρD2 ρcoe−iρco
D
2 −ρcoe−iρco

D
2 0 0

0 0 e−iρco
D
2 eiρco

D
2 −e−iρD2 −eiρD2

0 0 −ρcoe−iρco
D
2 ρcoeiρco

D
2 ρe−iρD2 −ρeiρD2

 . (D.2)

D.2 Normalization of Radiation Modes in Uniform Layer

In this appendix, the normalization constant and orthogonality properties of the uniform
layer radiation modes are derived. Specifically, this is done by evaluating the integral∫∞
−∞ φ̌k(x, s)φ̌l(x, s′)∗dx, k, l = 1, 2. Rather than using the piecewise definition of the

radiation modes in Eqs. (4.2), a single generic form may be given as:

φ̌l(x, s) = exp
[
(−1)lisx

]
, (D.3)

where for simplicity the field coefficient is assumed equal to unity. Inserting this form
into the integral produces:∫ ∞

−∞
φ̌k(x, s)φ̌l(x, s′)∗ dx =

∫ ∞
−∞

exp
[
(−1)kisx

]
exp

[
−(−1)lis′x

]
dx

=
∫ ∞
−∞

exp
[
ix
(
(−1)ks− (−1)ls′

)]
dx

= 2πδ((−1)ks− (−1)ls′), (D.4)
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where the last equal sign follows from the definition of the Dirac delta function in
Eq. (4.18). Since s and s′ denote propagation constants for the radiation mode, they are
both positive. Consequently, the argument of the Dirac delta function can only equal
zero when l = k. Using this, the above expression can be reduced by introduction of the
Kronecker delta, δkl, such that:

∫ ∞
−∞

φ̌k(x, s)φ̌l(x, s′)∗ dx = 2πδklδ(s− s′), (D.5)

from which it is seen that the normalization constant equals N = 2π. Normalized
radiation modes are thus given by:

φl(x, s) = 1√
N
φ̌l(x, s)

= 1√
2π

{
exp (−isx) , l = 1,
exp (isx) , l = 2.

(D.6)

Furthermore, from Eq. (D.5), it can be concluded that all uniform layer radiation modes
are mutually orthogonal.

D.3 Normalization of Guided Modes in Waveguide Layer

In this appendix, the normalization constant of the jth guided mode in a waveguide layer,
Nj ≡

∫∞
−∞ |Uj(x)|2 dx, used in Section 4.3, is calculated. Firstly, the integral is split into

three integrals according to the piecewise definition of Uj(x) in Eq. (4.9):

∫ ∞
−∞
|Uj(x)|2 dx =

∫ −D2
−∞

∣∣∣U [1]
j (x)

∣∣∣2 dx+
∫ D

2

−D2

∣∣∣U [2]
j (x)

∣∣∣2 dx+
∫ ∞
D
2

∣∣∣U [3]
j (x)

∣∣∣2 dx

=
∫ −D2
−∞

∣∣∣∣a[1]
j exp

(
−ih[1]

j

(
x+ D

2

))∣∣∣∣2 dx

+
∫ D

2

−D2

∣∣∣∣a[2]
j exp

(
−ih[2]

j

(
x− D

2

))
+ b

[2]
j exp

(
ih

[2]
j

(
x+ D

2

))∣∣∣∣2 dx

+
∫ ∞
D
2

∣∣∣∣b[3]
j exp

(
ih

[3]
j

(
x− D

2

))∣∣∣∣ dx

≡ I [1]
j + I [2]

j + I [3]
j . (D.7)
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The integrals I [1]
j and I [3]

j can be evaluated using that the propagation constants h[1,3]
j

are positive imaginary for guided modes:

I [1]
j =

∣∣a[1]
j

∣∣2 ∫ −D2
−∞

∣∣∣∣exp
(

Im
(
h

[1]
j

)(
x+ D

2

))∣∣∣∣2 dx

=
∣∣a[1]
j

∣∣2 ∫ −D2
−∞

exp
(

2 Im
(
h

[1]
j

)(
x+ D

2

))
dx

=
∣∣a[1]
j

∣∣2
2 Im

(
h

[1]
j

) [exp
(

2 Im
(
h

[1]
j

)(
x+ D

2

))]−D2
−∞

=
∣∣a[1]
j

∣∣2
2 Im

(
h

[1]
j

) . (D.8a)

In a similar manner, the integral I [3]
j is determined as:

I [3]
j =

∣∣b[3]
j

∣∣2
2 Im

(
h

[3]
j

) . (D.8b)

In the case of symmetry, that is, when the refractive indices in zones 1 and 3 are equal,
the propagation constants fulfill h[1]

j = h
[3]
j , and the absolute value of the field coefficients

are then identical,
∣∣a[1]
j

∣∣ =
∣∣b[3]
j

∣∣, such that I [1]
j = I [3]

j . The integral I [2]
j can be evaluated

in the following manner where it is used that h[2]
j is real:

I [2]
j =

∫ D
2

−D2

[
a

[2]
j e−ih

[2]
j (x−D2 ) + b

[2]
j eih

[2]
j (x+D

2 )
] [
a

[2]
j e−ih

[2]
j (x−D2 ) + b

[2]
j eih

[2]
j (x+D

2 )
]∗

dx

=
∫ D

2

−D2

∣∣a[2]
j

∣∣2 +
∣∣b[2]
j

∣∣2 + a
[2]
j

(
b
[2]
j

)∗
e−2ih[2]

j
x +

(
a

[2]
j

)∗
b
[2]
j e2ih[2]

j
x dx

= D
(∣∣a[2]

j

∣∣2 +
∣∣b[2]
j

∣∣2)+
∫ D

2

−D2
2 Re

(
a

[2]
j

(
b
[2]
j

)∗)
cos
(

2h[2]
j x
)

dx

= D
(∣∣a[2]

j

∣∣2 +
∣∣b[2]
j

∣∣2)+ Re
(
a

[2]
j

(
b
[2]
j

)∗) 1
h

[2]
j

[
sin
(

2h[2]
j x
)]D

2

−D2

= D
(∣∣a[2]

j

∣∣2 +
∣∣b[2]
j

∣∣2)+ 2 Re
(
a

[2]
j

(
b
[2]
j

)∗) sin
(
h

[2]
j D

)
h

[2]
j

. (D.8c)

Adding the sub-integrals I [1]
j , I [2]

j and I [3]
j from Eqs. (D.8) gives

∫∞
−∞ |Uj(x)|2 dx:∫ ∞

−∞
|Uj(x)|2 dx =

∣∣a[1]
j

∣∣2
2 Im

(
h

[1]
j

) +
∣∣b[3]
j

∣∣2
2 Im

(
h

[3]
j

)
+D

(∣∣a[2]
j

∣∣2 +
∣∣b[2]
j

∣∣2)+ 2 Re
(
a

[2]
j

(
b
[2]
j

)∗) sin
(
h

[2]
j D

)
h

[2]
j

(D.9)
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D.4 Repetition Length

This appendix serves to introduce the repetition length, Lrep, that is the length over
which the electric field in an open and uniform layer repeats itself when approximated by
a Riemann sum. The electric field in such a layer may be expressed as in Eq. (4.25):

E(x, z) =
∫ ∞

0
Al(s) exp(∓iγ(s)z)

[
exp(−ixs) + exp(+ixs)

]
ds. (D.10)

The integral over s may be numerically approximated by use of a Riemann sum in the
following way:

E(x, z) '
#∑
j=1

Al(j∆s) exp(∓iγ(j∆s)z)
[

exp(−ixj∆s) + exp(+ixj∆s)
]
∆s, (D.11)

where ∆s is a fixed s-step length: ∆s ≡ |sj+1 − sj | for any j = 1, 2, . . . ,# − 1. Since
exp(∓isx) = exp(∓i(sx+ 2π)), this and the approximate field expression in Eq. (D.11)
can be applied to determine the length along x over which the field repeats itself:

Lrep = 2π
∆s . (D.12)

From this, it is apparent that in the limit ∆s→ 0, which is in fact the definition of the
Riemann integral, the field does not repeat itself as would be expected. However, for
finite ∆s, and thus in practice for all numerical implementations, the approximation of
the field in the open geometry imposes a repetition of the field, whose period, Lrep, is
dependent on the discretization of s through Eq. (D.12). The s-step length, ∆s, is related
to the number of subintervals, #, through:

∆s = nk0

# , (D.13)

where the integration range has been assumed of width nk0. Combining Eqs. (D.12) and
(D.13) gives:

Lrep = 2π#
nk0

. (D.14)



Appendix E
Chapter 5

E.1 Derivation of Fredholm Equation for Illumination by
Fundamental Mode

This appendix presents a derivation of the integral equation that governs the mode
coupling at the interface between the waveguide layer and the uniform layer when the
waveguide layer is illuminated by the fundamental mode. The derivation largely follows
the procedure outlined in [Capsalis].

First, the reflection and transmission coefficient expressions in Eqs. (5.1) are derived
by use of the continuity condition at z = 0. Evaluating E1(x, z) and E2(x, z) at z = 0
and equating produces:

U1(x) [1 +R1] +
2∑

m=1

∫ ∞
0

R(ρ)ψm(x, ρ) dρ =
∞∑
l=1

∫ ∞
0

T (s)φl(x, s) ds = Φ(x). (E.1)

To derive the reflection coefficient R1, the first and third members of Eq. (E.1) are
multiplied by U1(x)∗ and integrated across the entire x-axis:

[1 +R1]
∫ ∞
−∞

U1(x)U1(x)∗ dx+
∫ ∞
−∞

2∑
m=1

∫ ∞
0

R(ρ)ψm(x, ρ) dρ U1(x)∗ dx

=
∫ ∞
−∞

Φ(x)U1(x)∗ dx. (E.2)

Interchanging the order of integration and applying the orthonormality relations in
Eqs. (4.24a) and (4.24d) reduces the equations to:

R1 = −1 +
∫ ∞
−∞

Φ(x)U1(x)∗ dx. (E.3)

Similarly, multiplying the first and third members of Eq. (E.1) with ψk(x, ρ′)∗ and
integrating across the x-axis produces:

[1 +R1]
∫ ∞
−∞

U1(x)ψk(x, ρ′)∗ dx+
∫ ∞
−∞

2∑
m=1

∫ ∞
0
R(ρ)ψm(x, ρ) dρ ψk(x, ρ′)∗ dx

=
∫ ∞
−∞

Φ(x)ψk(x, ρ′)∗ dx. (E.4)
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Again, interchanging the order of integration and applying the orthonormality relations
in Eqs. (4.24b) and (4.24d) produces:

2∑
m=1

∫ ∞
0

R(ρ)δmkδ(ρ− ρ′) dρ =
∫ ∞
−∞

Φ(x)ψk(x, ρ′)∗ dx

⇔R(ρ′) =
∫ ∞
−∞

Φ(x)ψk(x, ρ′)∗ dx, (E.5)

Finally, by multiplying the second and third members of Eq. (E.1) with φ∗k(x, s′),
integrating across the x-axis and applying the orthonormality relation from Eq. (4.24c),
the transmission coefficients are obtained as:

T (s) =
∫ ∞
−∞

Φ(x)φl(x, s)∗ dx, (E.6)

for l = 1, 2.
The second z-BC, differentiability at z = 0, can be applied to E1(x, z) and E2(x, z) by

assuming that the operation of differentiating under the integral sign is valid. Carrying
out this differentiation produces the following relation:

U1(x)β1 [−1 +R1] +
2∑

m=1

∫ ∞
0

β(ρ)R(ρ)ψm(x, ρ) dρ+
2∑
l=1

∫ ∞
0

γ(s)T (s)φl(x, s) ds = 0.

(E.7)

Inserting the relations obtained for R1, R(ρ) and T (s) from Eqs. (E.3), (E.5) and (E.6),
respectively, into the above expression then produces a Fredholm equation of the first
kind:

U1(x)β1

[
−2 +

∫ ∞
−∞

Φ(x′)U1(x′)∗ dx′
]

+
2∑

m=1

∫ ∞
0

ψm(x, ρ)β(ρ)
∫ ∞
−∞

Φ(x′)ψm(x′, ρ)∗ dx′ dρ

+
2∑
l=1

∫ ∞
0

φl(x, s)γ(s)
∫ ∞
−∞

Φ(x′)φl(x′, s)∗ dx′ ds = 0. (E.8)

This equation can be expressed more compactly as:∫ ∞
−∞

Φ(x′)K1(x, x′) dx′ = 2U1(x)β1, (E.9)

where K1(x, x′) denotes the kernel of the integral equation:

K1(x, x′) = β1U1(x)U1(x′)∗ +
2∑

m=1

∫ ∞
0

β(ρ)ψm(x, ρ)ψm(x′, ρ)∗ dρ

+
2∑
l=1

∫ ∞
0

γ(s)φl(x, s)φl(x′, s)∗ ds. (E.10)

Solutions to Fredholm equations of the first kind are not trivially found [Baker, p. 40],
and conversion into a Fredholm equation of the second kind is consequently desired. This
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can be carried out by creative use of the completeness relations in Eqs. (4.24e) and (4.24f).
Specifically, the completeness relations can be rewritten as the following zero-identities:

0 = k0n1

[
−U1(x)U1(x′)∗ −

2∑
m=1

∫ ∞
0

ψm(x, ρ)ψm(x′, ρ)∗ dρ+ δ(x− x′)
]
, (E.11a)

0 = k0n0

[
−

2∑
l=1

∫ ∞
0

φl(x, s)φl(x′, s)∗ ds+ δ(x− x′)
]
. (E.11b)

To ensure that the terms in these zero-identities have meaningful dimensions and values
compared to the terms in the kernel, K1(x, x′), the zero identities have been multiplied by
k0n1 and k0n0, respectively. The choice of n1 versus n0 relates directly to the definitions
of ρ and s. Adding these zero-identities to K1(x, x′) and applying the properties of the
Dirac delta function produces a Fredholm equation of the second kind in the aperture
field:

Φ(x) = Φ0(x) + λ

∫ ∞
−∞

Φ(x′)K2(x, x′) dx′. (E.12)

where the zeroth order aperture field, Φ0(x), the integral prefactor, λ, and the kernel,
K2(x, x′) ≡ K(x, x′) are presented in Eqs. (5.3b)-(5.3d).

E.2 Overlap Integral: 〈U1, φl(s)〉L2

The overlap integral 〈U1, φl(s)〉L2 is defined through:

〈U1, φl(s)〉L2 =
∫ ∞
−∞

U1(x)φl(x, s)∗ dx. (E.13)

The uniform layer radiation modes, φl(x, s), are given in Eq. (4.19), and by use of Euler’s
formula they may be recast in terms of cosines and sines:

φl(x, s) = 1√
2π

{
cos(sx)− i sin(sx), l = 1,
cos(sx) + i sin(sx), l = 2.

(E.14)

Since U1(x) is an even function, the integral over the sine-terms vanish whereby the
overlap integral reduces to:

〈U1, φl(s)〉L2 = 1√
2π

∫ ∞
−∞

U1(x) cos(sx) dx. (E.15)

From the above, it is clear that the overlap integral is independent of l. Inserting
the expression for U1(x) from Eq. (4.9), the overlap integral may be split into three
sub-integrals:

〈U1, φl(s)〉L2 = 1√
2π

{∫ −D2
−∞

a
[1]
j e−ih

[1]
j (x+D

2 ) cos(sx) dx

+
∫ D

2

−D2

[
a

[2]
j e−ih

[2]
j (x−D2 ) + b

[2]
j eih

[2]
j (x+D

2 )
]

cos(sx) dx

+
∫ ∞
D
2

b
[3]
j eih

[3]
j (x−D2 ) cos(sx) dx

}
(E.16)
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The evaluation of these integrals are straightforward using the following integral-identity
[Schaums, Eq. 17.25.11]:

∫
ecx cos(dx) dx = ecx [c cos(dx) + d sin(dx)]

c2 + d2 , (E.17)

where c and d are constants. Applying this integral-identity and the fact that h[1]
j and

h
[3]
j are purely imaginary produces the following result:

〈U1, φl(s)〉L2 = 1√
2π

{
−

a
[1]
j

s2 −
(
h

[1]
j

)2

[
ih

[1]
j cos

(
sD2
)

+ s sin
(
sD2
)]

+
2
(
a

[2]
j + b

[2]
j

)
eih

[2]
j
D/2

s2 −
(
h

[2]
j

)2

[
s cos

(
h

[2]
j
D
2

)
sin
(
sD2
)

−h[2]
j sin

(
h

[2]
j
D
2

)
cos
(
sD2
)]

−
b
[3]
j

s2 −
(
h

[3]
j

)2

[
ih

[3]
j cos

(
sD2
)

+ s sin
(
sD2
)]}

. (E.18)

Since the guided mode U1(x) is even, the cladding coefficients are equal, a[1]
j = b

[3]
j .

Similarly, the core coefficients are equal, a[2]
j = b

[2]
j . Finally, the propagation constants

in the cladding region are also identical, that is, h[1]
j = h

[3]
j . Hence, in the case of a

symmetric waveguide, the overlap integral reduces to:

〈U1, φl(s)〉L2 = 1√
2π

{
−

2a[1]
j

s2 −
(
h

[1]
j

)2

[
ih

[1]
j cos

(
sD2
)

+ s sin
(
sD2
)]

+
4a[2]
j eih

[2]
j
D/2

s2 −
(
h

[2]
j

)2

[
s cos

(
h

[2]
j
D
2

)
sin
(
sD2
)
− h[2]

j sin
(
h

[2]
j
D
2

)
cos
(
sD2
)]}

.

(E.19)

E.3 Overlap Integral: 〈ψm(ρ), φl(s)〉L2

In this appendix, expressions for the overlap integral between a waveguide layer radiation
mode, ψm(x, ρ), and a uniform layer radiation mode, φl(x, ρ), are derived. This overlap
integral, 〈ψm(ρ), φl(s)〉L2 , plays an important role in the determination of the various
reflection and transmission coefficients that are introduced for the two-layer open geometry
in Chapter 5. Before the expressions are derived, two improper integrals that are
encountered in the determination of these expressions are presented.
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δ+(x) and δ−(x)
In the derivation of expressions for 〈ψm(ρ), φl(s)〉L2 , the following semi-infinite integrals
appear:

δ+(k) ≡ 1
2π

∫ ∞
0

exp(ikx) dx, (E.20a)

δ−(k) ≡ 1
2π

∫ 0

−∞
exp(ikx) dx. (E.20b)

These integrals are termed δ+(k) and δ−(k) since by the (weak) definition of the Dirac delta
function in Eq. (4.18) their sum equals the Dirac delta function, δ(k) = δ+(k) + δ−(k).

As the two integrals are each other’s mirrors through:

δ−(k) = 1
2π

∫ 0

−∞
exp(ikx) dx = 1

2π

∫ ∞
0

exp(−ikx) dx = δ+(−k), (E.21)

focus in the following is put on expressing δ+(k). Expanding δ+(k) by use of Euler’s
formula for the complex exponential yields:

δ+(k) ≡ 1
2π

{∫ ∞
0

cos(kx) dx+ i

∫ ∞
0

sin(kx) dx
}
. (E.22)

Using the definition of δ(k) in Eq. (4.18) and the fact that cosine is an even function and
sine an odd functions gives:

δ(k) = 1
2π

{∫ ∞
−∞

cos(kx) dx+ i

∫ ∞
−∞

sin(kx) dx
}

= 1
π

∫ ∞
0

cos(kx) dx,

m∫ ∞
0

cos(kx) dx = πδ(k). (E.23)

Expressing the semi-infinite sine-integral in Eq. (E.22) is less straightforward. Initially,
the sine-integral is rewritten by use of the trigonometric identity sin(x) = cos(x− π/2),
and then transformed by the substitution x = y + π/(2k):∫ ∞

0
sin(kx) dx =

∫ ∞
0

cos
(
kx− π

2
)

dx

=
∫ ∞
− π

2k

cos (ky) dy (E.24)

=
∫ 0

− π
2k

cos (ky) dy +
∫ ∞

0
cos (ky) dy

=
∫ 0

− π
2k

cos (ky) dy + πδ(k), (E.25)

where the last equal sign follows from the relation in Eq. (E.23). Further evaluation of
the expression must take into account two cases: k 6= 0 and k = 0. For k 6= 0, the first
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term in Eq. (E.25) is: ∫ 0

− π
2k

cos (ky) dy = 1
k
, (E.26)

and the Delta function is not evaluated at k = 0 which then gives:∫ ∞
0

sin(kx) dx = 1
k
, k 6= 0. (E.27)

When k = 0 that integrand of the original integral, sin(kx), vanishes, and hence:∫ ∞
0

sin(kx) dx = 0, k = 0. (E.28)

Remembering that the sine integral represents a distribution to be evaluated under a
k-integral, the expression is conveniently expressed as:∫ ∞

0
sin(kx) dx = PV

(
1
k

)
, (E.29)

where PV denotes the Cauchy principal value. This effectively ensures that any disconti-
nuity of the integrand, in this case 1/k, is skipped upon evaluation under a k-integral.
For simplicity, the explicit Cauchy principal value is omitted, but it must be stressed that
integrations must avoid evaluation in k = 0. It is noted that the result is in agreement
with the use in [Vats].

Combining the results for the cosine and sine integrals and inserting in Eq. (E.22)
then yield an explicit expression for δ+(k):

δ+(k) = δ(k)
2 + i

2πk . (E.30a)

By the property in Eq. (E.21), this gives the following expression for δ−(k):

δ−(k) = δ(k)
2 − i

2πk , (E.30b)

where it has been used that the Dirac delta function is an even function, δ(k) = δ(−k).

Derivation of 〈ψm, φl〉L2

Explicit expressions for the overlap integral, or inner product, of a waveguide layer
radiation mode, ψm(x, ρ), and a uniform layer radiation mode, φl(x, s), are in this section
derived. The inner product is defined as:

〈ψm(ρ), φl(s)〉L2 =
∫ ∞
−∞

ψm(x, ρ)φl(x, s)∗ dx, (E.31)

where φl(x, s) and ψm(x, ρ) are defined in Eqs. (4.19) and (4.23). In the following, the
inner product is expressed for arbitrary m and l. The field coefficients of ψm(x, ρ) are
assumed chosen such that the modes are normalized.
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Due to the piecewise definition of ψm(x, ρ), the inner product is expressed as follows:

〈ψm(ρ), φl(s)〉L2 = 1√
2π

{∫ −D/2
−∞

[
a[1] exp(−iρx) + b[1] exp(iρx)

]
exp(−i(−1)lsx) dx

+
∫ D/2

−D/2

[
a[2] exp(−iρcox) + b[2] exp(iρcox)

]
exp(−i(−1)lsx) dx

+
∫ ∞
D/2

[
a[3] exp(−iρx) + b[3] exp(iρx)

]
exp(−i(−1)lsx) dx

}
(E.32)

≡ 1√
2π

[
Im,l(ρ, s) + IIm,l(ρ, s) + IIIm,l(ρ, s)

]
. (E.33)

For the sake of clarity, each of the above integrals are treated separately:

Im,l(ρ, s) ≡
∫ −D/2
−∞

[
a[1] exp(−iρx) + b[1] exp(iρx)

]
exp(−i(−1)lsx) dx

= a[1]
∫ 0

−∞
exp(ix(−ρ− (−1)ls)) dx+ b[1]

∫ 0

−∞
exp(ix(ρ− (−1)ls)) dx

− a[1]
∫ 0

−D/2
exp(ix(−ρ− (−1)ls)) dx− b[1]

∫ 0

−D/2
exp(ix(ρ− (−1)ls)) dx

= 2πa[1]δ−(−ρ− (−1)ls) + 2πb[1]δ−(ρ− (−1)ls) + τ
(I)
m,l(ρ, s), (E.34)

where the definition of δ−(k) from Eq. (E.20b) has been used, and where the following
shorthand notation has been used for the proper integrals:

τ
(I)
m,l(ρ, s) ≡ − a

[1]
∫ 0

−D/2
exp(ix(−ρ− (−1)ls)) dx− b[1]

∫ 0

−D/2
exp(ix(ρ− (−1)ls)) dx

= − ia[1]

ρ+ (−1)ls

[
1− exp

(
i
(
ρ+ (−1)ls

) D
2

)]
+ ib[1]

ρ− (−1)ls

[
1− exp

(
i
(
−ρ+ (−1)ls

) D
2

)]
. (E.35)

An expression for the second integral in Eq. (E.32) is:

IIm,l(ρ, s) ≡
∫ D/2

−D/2

[
a[2] exp(−iρcox) + b[2] exp(iρcox)

]
exp(−i(−1)lsx) dx

= a[2]
∫ D/2

−D/2
exp(−ix(ρco + (−1)ls)) dx+ b[2]

∫ D/2

−D/2
exp(ix(ρco − (−1)ls)) dx

= 2a[2]

ρco + (−1)ls sin
(

(ρco + (−1)ls)D2

)
+ 2b[2]

ρco − (−1)ls sin
(

(ρco − (−1)ls)D2

)
.

(E.36)
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Finally, the third integral in Eq. (E.32) is expressed:

IIIm,l(ρ, s) ≡
∫ ∞
D/2

[
a[3] exp(−iρx) + b[3] exp(iρx)

]
exp(−i(−1)lsx) dx

= a[3]
∫ ∞

0
exp(ix(−ρ− (−1)ls)) dx+ b[3]

∫ ∞
0

exp(ix(ρ− (−1)ls)) dx

− a[3]
∫ D/2

0
exp(ix(−ρ− (−1)ls)) dx− b[3]

∫ D/2

0
exp(ix(ρ− (−1)ls)) dx

= 2πa[3]δ+(−ρ− (−1)ls) + 2πb[3]δ+(ρ− (−1)ls) + τ
(III)
m,l (ρ, s), (E.37)

where the definition of δ+(k) from Eq. (E.20a) and the following shorthand notation for
the proper integrals have been used:

τ
(III)
m,l (ρ, s) ≡ − a[3]

∫ D/2

0
exp(ix(−ρ− (−1)ls)) dx− b[3]

∫ D/2

0
exp(ix(ρ− (−1)ls)) dx

= − ia[3]

ρ+ (−1)ls

[
exp

(
−i
(
ρ+ (−1)ls

) D
2

)
− 1
]

+ ib[3]

ρ− (−1)ls

[
exp

(
i
(
ρ− (−1)ls

) D
2

)
− 1
]
. (E.38)

Having expressed the three sub-integrals that constitute 〈ψm, φl〉L2 these may be collected
to express the inner product:

〈ψm(ρ), φl(s)〉L2 ≡ 1√
2π

[
Im,l(ρ, s) + IIm,l(ρ, s) + IIIm,l(ρ, s)

]
= 1√

2π

{
2π
[
a[1]δ−(−ρ− (−1)ls) + b[1]δ−(ρ− (−1)ls)

+ a[3]δ+(−ρ− (−1)ls) + b[3]δ+(ρ− (−1)ls)
]

+ τm,l(ρ, s) + IIm,l(ρ, s)
}
, (E.39)

with:

τm,l(ρ, s) ≡ τ (I)
m,l(ρ, s) + τ

(III)
m,l (ρ, s). (E.40)

Applying the expressions for δ+(k) and δ−(k) from Eqs. (E.30) further gives:

〈ψm(ρ), φl(s)〉L2 = 1√
2π

{
2π
[
a[1]

(
δ(ρ+ (−1)ls)

2 + i

2π(ρ+ (−1)ls)

)
+ b[1]

(
δ(ρ− (−1)ls)

2 − i

2π(ρ− (−1)ls)

)
+ a[3]

(
δ(ρ+ (−1)ls)

2 − i

2π(ρ+ (−1)ls)

)
+b[3]

(
δ(ρ− (−1)ls)

2 + i

2π(ρ− (−1)ls)

)]
+ τm,l(ρ, s) + IIm,l(ρ, s)

}
. (E.41)
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The expression in Eq. (E.41) is the final, general and explicit expression for 〈ψm(ρ), φl(s)〉L2 .
In the following, it is argued how the expression may be reduced when considering a
specific l.

The inner product only occurs under ρ- and s-integrals, see e.g. Eq. (5.12), and both
s and ρ are positive. Therefore, the Dirac delta functions, with sums and subtractions
of ρ and s as arguments, are only acting operators if the arguments can equal zero in
the integration range, that is, only when ρ and s are of opposite signs. Consequently,
the terms δ(ρ + s) and δ(−ρ − s) can be omitted. Using this, 〈ψm(ρ), φ1(s)〉L2 and
〈ψm(ρ), φ2(s)〉L2 may be expressed as:

〈ψm(ρ), φ1(s)〉L2 = 1√
2π

{
a[1]

(
πδ(ρ− s) + i

ρ− s

)
− ib[1]

ρ+ s

+ a[3]
(
πδ(ρ− s)− i

ρ− s

)
+ ib[3]

ρ+ s
+ τm,1(ρ, s) + IIm,1(ρ, s)

}
,

(E.42a)

〈ψm(ρ), φ2(s)〉L2 = 1√
2π

{
ia[1]

ρ+ s
+ b[1]

(
πδ(ρ− s)− i

ρ− s

)

− ia[3]

ρ+ s
+ b[3]

(
πδ(ρ− s) + i

ρ− s

)
+ τm,2(ρ, s) + IIm,2(ρ, s)

}
.

(E.42b)

As stated above, 〈ψm(ρ), φl(s)〉L2 is evaluated under ρ- and s-integrals, and therefore it
is fruitful to collect the terms containing the Delta function, δ(ρ− s), and the terms not
containing the Delta function, separately. That is, to express the overlap integral in the
form:

〈ψm(ρ), φl(s)〉L2 = Gm,l(ρ)δ(ρ− s) +Hm,l(ρ, s), (E.43)

where:

Gm,1(ρ) =
√
π

2

(
a[1] + a[3]

)
, (E.44a)

Hm,1(ρ, s) = 1√
2π

{
i

[
a[1] − a[3]

ρ− s
+ b[3] − b[1]

ρ+ s

]
+ τm,1(ρ, s) + IIm,1(ρ, s)

}
, (E.44b)

Gm,2(ρ) =
√
π

2

(
b[1] + b[3]

)
, (E.44c)

Hm,2(ρ, s) = 1√
2π

{
i

[
a[1] − a[3]

ρ+ s
+ b[3] − b[1]

ρ− s

]
+ τm,2(ρ, s) + IIm,2(ρ, s)

}
. (E.44d)

It should be noted that a defining feature of all inner products can be used to find the re-
versed inner product 〈φl(s), ψm(ρ)〉L2 via the inner product 〈ψm(ρ), φl(s)〉L2 [Christensen2,
Definition 4.1.1]:

〈φl(s), ψm(ρ)〉L2 = 〈ψm(ρ), φl(s)〉∗L2 . (E.45)
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E.4 Derivation of Fredholm Equation for Illumination by
Radiation Mode

This appendix derives an integral equation for the aperture field at z = 0, Θm̂(x, ρ̂),
due to illumination by a radiation mode in the open geometry presented in Fig. 5.1. To
arrive at this equation, the reflection and transmission coefficients, defined by the field
expansions in Eqs. (5.9), are firstly expressed in terms of the aperture field.

The demand of continuity of the field at z = 0 gives the following equation:

ψm̂(x, ρ̂) +R1,m̂(ρ̂)U1(x) +
2∑

m=1

∫ ∞
0
Rm,m̂(ρ, ρ̂)ψm(x, ρ) dρ

=
2∑
l=1

∫ ∞
0
Tl,m̂(s, ρ̂)φl(x, s) ds = Θm̂(x, ρ̂). (E.46)

The first and third members of Eq. (E.46) are multiplied by U1(x)∗ and integrated over
all x:∫ ∞

−∞
ψm̂(x, ρ̂)U1(x)∗ dx+R1,m̂(ρ̂)

∫ ∞
−∞

U1(x)U1(x)∗ dx

+
∫ ∞
−∞

2∑
m=1

∫ ∞
0
Rm,m̂(ρ, ρ̂)ψm(x, ρ) dρ U1(x)∗ dx =

∫ ∞
−∞

Θm̂(x, ρ̂)U1(x)∗ dx. (E.47)

Interchanging the order of integration and using the orthonormality relations in Eqs. (4.24a)
and (4.24d) gives an expression for R1,m̂(ρ̂):

R1,m̂(ρ̂) =
∫ ∞
−∞

Θm̂(x, ρ̂)U1(x)∗ dx. (E.48)

Multiplying next the first and third members of Eq. (E.46) with ψk(x, ρ′)∗ and
integrating over all x produces:∫ ∞

−∞
ψm̂(x, ρ̂)ψk(x, ρ′)∗ dx+R1,m̂(ρ̂)

∫ ∞
−∞

U1(x)ψk(x, ρ′)∗ dx

+
∫ ∞
−∞

2∑
m=1

∫ ∞
0
Rm,m̂(ρ, ρ̂)ψm(x, ρ) dρ ψk(x, ρ′)∗ dx =

∫ ∞
−∞

Θm̂(x, ρ̂)ψk(x, ρ′)∗ dx.

(E.49)

Again, interchanging the order of integration and applying the orthogonality relations in
Eqs. (4.24b) and (4.24d), allows simplification of the equation as follows:

δm̂kδ(ρ̂− ρ′) +Rk,m̂(ρ′, ρ̂) =
∫ ∞
−∞

Θm̂(x, ρ̂)ψk(x, ρ′)∗ dx

m

Rk,m̂(ρ′, ρ̂) =
∫ ∞
−∞

Θm̂(x, ρ̂)ψk(x, ρ′)∗ dx− δm̂kδ(ρ̂− ρ′). (E.50)

Finally, the second and third members of Eq. (E.46) are multiplied with φk(x, s′)∗
and integrated over all x. The order of integration is changed, and using this and the
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orthogonality relation in Eq. (4.24c) gives an expression for the transmission coefficients:

Tk,m̂(s′, ρ̂) =
∫ ∞
−∞

Θm̂(x, ρ̂)φk(x, s′)∗ dx. (E.51)

To derive an integral equation for Θm̂(x, ρ̂), the demand of differentiability at z = 0
is applied. To this end, it is assumed that integration with respect to z of the field
expressions in Eqs. (5.9) can be carried out under the integrals:

− β(ρ̂)ψm̂(x, ρ̂) + β1R1,m̂(ρ̂)U1(x) +
2∑

m=1

∫ ∞
0

β(ρ)Rm,m̂(ρ, ρ̂)ψm(x, ρ) dρ

= −
2∑
l=1

∫ ∞
0

γ(s)Tl,m̂(s, ρ̂)φl(x, s) ds. (E.52)

Insertion of the expressions for R1,m̂(ρ̂), Rm,m̂(ρ, ρ̂), and Tl,m̂(s, ρ̂) from Eqs. (E.48),
(E.50) and (E.51), respectively, into Eq. (E.52) yields a Fredholm equation of the first
kind:

2β(ρ̂)ψm̂(x, ρ̂) =
∫ ∞
−∞

Θm̂(x′, ρ̂)
[
β1U1(x)U1(x′)∗ +

2∑
m=1

∫ ∞
0

β(ρ)ψm(x, ρ)ψm(x′, ρ)∗ dρ

+
2∑
l=1

∫ ∞
0

γ(s)φl(x, s)φl(x′, s)∗ ds
]

dx, (E.53)

which may be expressed more compactly:

2β(ρ̂)ψm̂(x, ρ̂) =
∫ ∞
−∞

Θm̂(x′, ρ̂)K1(x, x′) dx, (E.54)

with the kernel:

K1(x, x′) = β1U1(x)U1(x′)∗ +
2∑

m=1

∫ ∞
0

β(ρ)ψm(x, ρ)ψm(x′, ρ)∗ dρ

+
2∑
l=1

∫ ∞
0

γ(s)φl(x, s)φl(x′, s)∗ ds. (E.55)

To obtain a second order Fredholm equation, the following zero-identities, obtained using
the completeness relations in Eqs. (4.24e) and (4.24f):

0 = k0n1

(
δ(x− x′)− U1(x)U1(x)∗ −

2∑
m=1

∫ ∞
0

ψm(x, ρ)ψm(x′, ρ)∗ dρ
)
, (E.56a)

0 = k0n0

(
δ(x− x′)−

2∑
l=1

∫ ∞
0

φl(x, s)φl(x′, s)∗ ds
)
, (E.56b)

are added to K1(x, x′), and manipulations of Eq. (E.54) then gives a second order Fredholm
equation:

Θm̂(x, ρ̂) = Θ0,m̂(x, ρ̂) + λ

∫ ∞
−∞

Θm̂(x′, ρ̂)K(x, x′) dx′, (E.57)

where Θ0,m̂(x, ρ̂) and K(x, x′) are defined in Eqs. (5.11).
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E.5 Expressions for Reflection and Transmission Coefficients

In this appendix, expressions for the reflection coefficients for the radiation modes for illu-
mination by the guided mode, R(1)(ρ), and for the reflection and transmission coefficients
for illumination by a radiation mode, R1,m̂, Rm,m̂(ρ, ρ̂) and Tl,m̂(s, ρ̂), introduced in Chap-
ter 5, are derived using the expression for 〈ψm(ρ), φl(s)〉L2 , presented in Appendix E.3.
This overlap integral can essentially be expressed on the form:

〈ψm(ρ), φl(s)〉L2 = Gm,l(ρ)δ(ρ− s) +Hm,l(ρ, s), (E.58)

where Gm,l(ρ) and Hm,l(ρ, s) are defined in Eqs. (E.44).

Illumination by Fundamental Mode

Firstly, R(1)(ρ), given in Eq. (5.8b), is expressed in terms of the result in Eq. (E.58):

R(1)(ρ) = − c
2∑
l=1

{
Gl(ρ)∗ [γ(ρ)− k0n0] 〈U1, φl(ρ)〉L2

+
∫ ∞

0
Hl(ρ, s)∗ [γ(s)− k0n0] 〈U1, φl(s)〉L2 ds

}
, (E.59)

where the m-dependence of Gm,l(ρ) and Hm,l(ρ, s) has been omitted since R(1)
1 (ρ) =

R
(1)
2 (ρ) = R(1)(ρ).

Illumination by Radiation Mode

Using the expression in Eq. (E.58), the reflection and transmission coefficients for illumi-
nation by a radiation mode, see Eqs. (5.14), may be expressed as follows:

R(1)
1,m̂(ρ̂) = − C

2∑
l=1

{
Gm̂,l(ρ̂)〈φl(ρ̂), U1〉L2(γ(ρ̂)− k0n0)

+
∫ ∞

0
Hm̂,l(ρ̂, s)〈φl(s), U1〉L2(γ(s)− k0n0) ds

}
, (E.60a)

R(1)
m,m̂(ρ, ρ̂) = δmm̂δ(ρ− ρ̂) {C[k0(2n1 + n0)− β(ρ̂)]− 1}

− C
2∑
l=1

{
Gm̂,l(ρ̂)Hm,l(ρ, ρ̂)∗ [γ(ρ̂)− k0n0]

+Gm,l(ρ)∗Hm̂,l(ρ̂, ρ) [γ(ρ)− k0n0]
+Gm̂,l(ρ̂)Gm,l(ρ)∗δ(ρ− ρ̂) [γ(ρ̂)− k0n0]

+
∫ ∞

0
Hm̂,l(ρ̂, s)Hm,l(ρ, s)∗ [γ(s)− k0n0] ds

}
, (E.60b)

T (1)
l,m̂ (s, ρ̂) = C [Gm̂,l(ρ̂)δ(ρ̂− s) +Hm̂,l(ρ̂, s)] [2k0(n0 + n1)− β(ρ̂)− γ(s)]. (E.60c)
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