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Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and
a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more effi-
cient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A 33, 1298 (2016)]. Here, we
generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular
geometries in open space. The open boundary condition is a consequence of having an infinite computational do-
main described using basis functions that expand the whole space. The strength of the method lies in discretizing the
Fourier integrals using a non-uniform circular “dartboard” sampling of the Fourier k space. We show that our
sampling technique leads to a more accurate description of the continuum of the radiation modes that leak
out from the structure. We also compare our approach to conventional discretization with direct and inverse
factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of
optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, en-
abling more accurate and efficient modeling of open 3D nanophotonic structures. © 2017 Optical Society of America
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1. INTRODUCTION

Numerous nanophotonic devices, including microcavity reso-
nators [1], slow-light waveguides [2–4], and single-photon
sources [5,6], are open systems with properties strongly char-
acterized by their leakage of light into the surroundings, which
in principle extend to infinity. With the exception of the
Green’s function integral equation approach [7], the majority
of conventional approaches for modeling photonic nanostruc-
tures, including the finite-difference time-domain technique
[7,8] and the finite-elements method [7], inherently rely on
a limited computational domain combined with either peri-
odic, closed, or artificially absorbing boundary conditions
(BCs). That is, most conventional methods cannot fully ac-
count for the openness of a system, although this is required
to correctly model radiative losses. Therefore, simulations of
open systems require careful treatment of the boundaries of
the computational domain to avoid artificial reflections from
the domain wall [9–12].

To circumvent the problem of selecting a proper artificially
absorbing BC [13], we have developed a Fourier modal method

(FMM) based on a new combination of an open BC and an
efficient discretization scheme [14], called open Fourier modal
method (oFMM) in the following. The formalism presented in
Ref. [14] was, however, limited to rotationally symmetric struc-
tures. In this work, we apply both the open boundary formal-
ism and the efficient sampling of the k space to model general
3D structures in Cartesian coordinates, in particular the rectan-
gular waveguide. We remark that the new oFMM formalism
affects only the eigenmode calculations; when they have been
computed, the oFMM formalism is otherwise identical to the
well-established Fourier modal method.

The open boundary of the computational domain can be
described by using basis functions, plane waves in this case,
expanding the whole infinite space, and by using the Fourier
transformation. This formalism replaces the usual Fourier series
expansion [15–17], which inherently assumes periodicity of the
field components. While the use of the Fourier integral trans-
formation gives an exact description of the structure in the limit
of continuous k-space sampling, the numerical implementation
does require a k-space discretization. An advantage of the new
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approach, however, is that we have the freedom to choose the
k-space discretization in a way that leads to a more efficient
mode sampling. Similar ideas have also been reported for
two-dimensional (2D) [18] and rotationally symmetric
three-dimensional (3D) [19–21] structures, but without apply-
ing efficient k-space discretization schemes. In contrast, in our
recent work [14] we developed the oFMM approach based
on open BCs and a Chebyshev grid [22,23] for rotationally
symmetric structures, an approach which we here generalize
for any 3D system.

In addition, we discuss how to use Li’s factorization rules
[15–17] in connection with the 3D oFMM method. It turns
out that, while in the rotationally symmetric case Li’s factori-
zation rules are straightforwardly adopted for any k-space dis-
cretization [14,19], for the general 3D approach we can only
apply the inverse factorization rule when using the conven-
tional discretization scheme. In spite of this subtlety, we will
show that our new discretization scheme leads to a faster con-
vergence compared to traditional discretization schemes.

The paper is organized as follows. Section 2 outlines the
theory of the oFMM approach. The details of the new discre-
tization scheme are discussed in Section 3. The method is tested
by calculating the dipole emission in a waveguide and the reflec-
tion of the fundamental mode from a waveguide–metal interface
in Section 4. After a discussion of advantages and limitations of
the method in Section 5, conclusions are drawn in Section 6, and
detailed derivations of our theory are provided in Appendix A.

2. THEORY

In this section, we follow the approach of Ref. [14] and general-
ize the results for the 3D Cartesian coordinate system. We out-
line the derivation of the open BC formalism and introduce
the theoretical concepts required to understand the results
of the following sections. As important examples, we show how
the oFMM approach is applied to calculate the emission from a
dipole placed inside a waveguide and to compute the reflection
from a waveguide–metal interface. In Appendix A, we give the
detailed derivations of the open geometry formalism and
discuss the applicability of the Fourier factorization rules.

A. Open Boundary Condition Formalism

We use a complete vectorial description of Maxwell’s equations
based on Fourier expansion and open BCs to describe the
electromagnetic (EM) fields in a z-invariant material section.
The z dependence can be treated by combining z-invariant sec-
tions using the scattering matrix formalism (see, e.g., [7,24] for
details); this part of the calculation remains unchanged by the
new oFMM formalism, which only alters the way that modes of
each z-invariant section are calculated. The task is then to com-
pute the lateral electric and magnetic field components of the
eigenmodes, which form the expansion basis for the EM field.
In the conventional FMM, this is done by expanding the field
components as well as the permittivity profile in Fourier series
in the lateral coordinates �x; y� on a finite-sized computational
domain, implying that these functions vary periodically in these
coordinates. In the open boundary formalism, we instead
consider an infinite-sized computational domain and employ
expansions in Fourier integrals. We use a plane-wave expansion

as the basis functions. In the following, we describe the general
steps and equations required to expand the field components
and to solve for the expansion coefficients and the propagation
constant. The specific equations and derivations are given in
Appendix A and referenced throughout this section.

We start by considering a z-invariant part of the space where
the lateral structure is defined by the relative permittivity ε�x; y�
and impermittivity η�x; y� ≡ 1∕ε�x; y�. For simplicity, we con-
sider a non-magnetic material having vacuum permeability μ0.
In such a region of space, we write the Maxwell’s equations
using a harmonic time dependence of the form exp�−iωt� as

∇ × E�x; y; z� � iωμ0H�x; y; z�; (1)

∇ ×H�x; y; z� � −iωε0ε�x; y�E�x; y; z�; (2)

where ω is the angular frequency and E and H are the vectorial
electric and magnetic fields, respectively. We then write
the fields in a component-wise representation, as shown in
Eqs. (A1)–(A6) in Appendix A, and introduce a z dependence
of the form exp�iβz�, where β is the propagation constant of a
particular eigenmode. The individual field components and the
permittivity and impermittivity functions are then expanded
on basis functions g�kx; ky; x; y� � exp�i�kxx � kyy�� (corre-
sponding to a plane-wave expansion basis for harmonic time
dependence) as

f �x; y� �
Z

∞

−∞

Z
∞

−∞
cf �kx; ky�g�kx; ky; x; y�dkxdky

≃
X
m

X
l

cf �kmx ; kly�g�kmx ; kly; x; y�Δkmx Δkly; (3)

where in the last row the integral expansions are discretized us-
ing a Riemann sum on a �kmx ; kly� grid for numerical calcula-
tions. The double summation over the indices m and l in
Eq. (3) is valid for the conventional separable discretization
scheme, where the discretization grid coordinates along the
kx and ky axes in k space are defined independently of each other.
However, when using a non-separable representation as we will
do in the following, the Riemann sum is instead written as

f �x; y� ≃
X
ξ

cf �kξx ; kξy �g�kξx ; kξy ; x; y�Δkξ; (4)

where a single index ξ is used to describe the discretization points
in the 2D k space andΔkξ is the discretization area for the ξth k
point. In the particular case of the separable discretization in
Eq. (3), we have Δkξ � Δkmx Δkly. This discretization area
Δkξ will generally vary as a function of ξ. Furthermore, as will
be discussed in detail in Section 3, the selection of the wave
number values kξx and kξy defines the Fourier expansion basis.
The computational efficiency of our approach depends
crucially on the choice of this expansion basis.

When expanding the field components using the separable
discretization, we treat the product of the permittivity function
and the electric field components in Eq. (2) using Li’s factori-
zation rules [15–17]. However, as discussed in Appendix A, this
is not possible when using a non-separable discretization. The
details of the expansions are given in Eqs. (A14)–(A16), (A20),
(A21), and (A25)–(A31). After inserting the expansions into
Maxwell’s equations and eliminating the z components of
the EM fields, we arrive at two sets of equations that couple
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the lateral field components [Eqs. (A24) and (A34) in
Appendix A]:�

kxε−1Totky −kxε−1Totkx � k20I
kyε−1Totky − k

2
0I −kyε−1Totkx

��
hx
hy

�
� ωε0β

�
ex
ey

�
;

(5)
�

−kxky k2x − k20εy
k20εx − k

2
y kykx

��
ex
ey

�
� ωμ0β

�
hx
hy

�
; (6)

where ex , ey, hx , and hy are the vectors of the expansion
coefficients of Ex , Ey, Hx , and Hy, respectively, and kx and

ky are diagonal matrices of the discretized kξx and kξy values.
Furthermore, εTot � ΔεΔk � εBI, where Δε is the Toeplitz
matrix defined below Eq. (A22), I is the identity operator,
and Δk is the diagonal matrix containing the elements Δkξ.
When using a separable discretization grid, εx and εy are given
by Eqs. (A30) and (A31), respectively. Combining Eqs. (5) and
(6) allows us to compute, for example, the lateral electric field
components Ex;j�x; y� and Ey;j�x; y� of the eigenmode j and its
propagation constant βj, after which the lateral magnetic field
components Hx;j�x; y� and Hy;j�x; y� and the longitudinal field
components Ez;j�x; y� and Hz;j�x; y� can be derived. In
Appendix A, we show how Li’s factorization rules are correctly
used with the oFMM based on equidistant discretization.
However, our non-separable “dartboard” discretization intro-
duced in Section 3 is not compatible with the inverse factori-
zation rule, and for this reason we employ only the direct
factorization rule, which means that we use εx � εy � εTot.

B. Field Emitted by a Point Dipole

In the modal expansion method, the emission from a point di-
pole placed in a photonic structure can be described [7,25] as
an expansion of eigenmodes with expansion coefficients pro-
portional to the electric field strength of the corresponding
eigenmode obtained from Eqs. (5) to (6) at the emitter posi-
tion. The total field emitted by a point dipole p placed at rpd
inside a z-invariant structure can be represented as

E�x; y; z� �
X
j

aj�rpd;p�Ej�x; y; z�

�
X
j

X
ξ

aj�rpd;p�cj;ξg�kξx ; kξy ; x; y�Δkξeiβj�z−zpd�;

(7)

where aj�rpd; p� is the dipole coupling coefficient to mode j,
which can be calculated using the Lorentz reciprocity theorem
[7,25]. The coupling coefficient depends on the dipole position
rpd and dipole moment p through a dot product p · Ej�rpd�.
For the sake of notational clarity, we omit these dependencies in
the following. Furthermore, cj;ξ are the expansion coefficients
for mode j, and g�kξx ; kξy ; x; y� are vectorial generalizations of the
scalar plane-wave basis functions introduced in Eq. (3).

The emitted field in Eq. (7) consists of three contributions
[26]: guided modes, radiating modes, and evanescent modes. In
a waveguide surrounded by air, the eigenmode j is guided if the
propagation constant βj obeys k20 < β2j ≤ �nwk0�2, where nw is
the refractive index of the waveguide. In contrast, the mode is

radiating if 0 < β2j ≤ k20, and evanescent if β2j < 0. We will
apply this classification in Section 4 when we investigate the
performance of the discretization schemes.

The normalized power emitted by a dipole to a selected
mode can be expressed as [27]

Pj

PBulk

� ω

2

Imfp� · ajEj�rpd�g
PBulk

� ω

2

Imfp� ·P
ξ
ajcj;ξgξ�rpd�Δkξg

PBulk

; (8)

where PBulk � jpj2nBω4∕�12πϵ0c3� is the emitted power in a
bulk medium of refractive index nB . The normalized power is
equal to the normalized spontaneous emission rate [27]
γj∕γBulk � Pj∕PBulk, where γj and γBulk are the spontaneous
emission rates to the mode j and to a bulk material, respectively.
In the following we will only use the normalized unitless
quantity Γj � γj∕γBulk for the emission rates.

C. Reflection at an Interface

While the theory above holds for a structure with uniformity
along the z axis, most geometries of interest consist of several
z-invariant sections. The full structure can be described by
combining the solutions of Eqs. (5) and (6) using a scattering
matrix approach [7,24]. Since our oFMM is based on expand-
ing the fields in each layer using the same basis function, the
reflections and transmission of the eigenmodes can be calcu-
lated conveniently using the expansion coefficients as described
in the following.

Let CE
i and CH

i , where i � 1; 2 is the layer index, be ma-
trices whose columns contain the vector expansion coefficients
for the lateral electric and magnetic fields, computed using
Eqs. (5) and (6), respectively. Then, at the interface of material
layers 1 and 2, the transmission and reflection matrices are
given as [7,25]

T12 � 2��CE
1 �−1CE

2 � �CH
1 �−1CH

2 �−1; (9)

R12 �
1

2
��CE

1 �−1CE
2 − �CH

1 �−1CH
2 �T12: (10)

3. DISCRETIZATION SCHEME

We have now, via the modal representation in Eq. (4),
developed a formalism based on a non-uniform k-space discre-
tization, which is a generalization of the uniform k-space
discretization traditionally used in the Fourier modal method.
In this section, we describe the important point of how to
efficiently sample the k space, before proceeding to example
calculations.

The lateral expansion basis functions g�kx; ky; x; y� �
exp�i�kxx � kyy�� are plane waves defined entirely by the
discretized values of the lateral wavenumbers kx and ky. To dis-
cretize the transverse expansion basis efficiently in a general 3D
approach, we generalize the non-uniform strategy used in the
rotational symmetric case [14].

First, in the conventional equidistant mode discretization
approach, the spatial grid in k space is given by

�kmx ; kly� � �−kcut−off ;x � mΔkx; −kcut−off ;y � lΔky�; (11)
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where Δkα � 2kcut−off ;α∕�N α − 1� and m; l � 0;…; �N α − 1�,
with kcut−off ;α being the cutoff value of the wavenumber andN α

the number of modes along the α � x; y axis; see Fig. 1. In the
following, when we apply the equidistant discretization
scheme, we will use identical cutoff values kcut−off ;x � kcut−off ;y
and modes Nx � N y along the kx and ky axes.

Now, the proposed non-uniform circular non-separable dis-
cretization approach, which in the following we refer to as the
“dartboard” scheme, is defined as follows. We consider the in-
plane wavevector in polar coordinates and set N ϕ rays on
equidistantly placed angles; cf. Fig. 1. Along each of the rays,
the wavenumber values are sampled so that we use dense sam-
pling in the interval �0; 2k0� symmetrically placed around k0,
and in the interval �2k0; kcut−off � a fixed step size Δktail is used.
The symmetric dense mode sampling is defined using a
Chebyshev grid [22,23] as

km � k0 sin�θm�; 1 ≤ m ≤ N s∕2;

km � k0�2 − sin�θm��; N s∕2� 1 ≤ m ≤ N s; (12)

where θm � mπ
N s�1 and N s is the number of modes in the in-

terval �0; 2k0�. Thus, in the dartboard discretization approach
we have four parameters: N ϕ, N s, Δktail, and kcut−off . The mo-
tivation of using symmetric dense sampling around k0 is to ac-
curately account for the radiating modes as discussed in detail
in Ref. [14]. In the next section, we show that the dartboard
discretization approach outperforms the conventional equidis-
tant mode sampling. As pointed out in Ref. [14], the dartboard
mode sampling approach described here is not necessarily uni-
versally optimal, and geometry-specific variations may be
adopted instead. However, with the proposed approach, signifi-
cant improvement is achieved in terms of the required number
of modes and thus of the required computational power.

4. RESULTS

Next, after introducing the principles of the oFMM formalism
and the efficient mode sampling scheme, we test our method by
investigating its performance for the two cases of light emission
by a dipole in a square waveguide, as well as of reflection at a
waveguide–metal interface. Both examples depend critically on
a correct and accurate description of the open BC. We also
compare the new discretization scheme to the conventional dis-
cretization used in connection with Li’s factorization rules. As
already mentioned, in Appendix A we show how Li’s factori-
zation rules are correctly used with oFMM based on equidistant
discretization, whereas the equations implementing the non-
separable dartboard discretization used in this manuscript are
not compatible with the inverse factorization rule. However,
our results will demonstrate that, even without the inverse fac-
torization rule, the dartboard discretization approach outper-
forms the equidistant discretization implemented using Li’s
factorization rules.

A. Dipole Emission in a Square Waveguide

We first investigate light emission in a square waveguide by
calculating the emission rates to the guided modes and to
the radiation modes. Additionally, we compute the spontane-
ous emission factor β (not to be confused with the propagation
constant βj) describing the ratio of emitted light coupled to the
fundamental guided mode. While typical nanophotonic wave-
guides support only a few guided modes, the total emission
rate, and thus the β factor, depend on the emission into the
continuum of radiation modes leaking out of the waveguide.
The strength of the oFMM method becomes apparent when
determining the light emission to the radiation modes.

Similar to the investigations presented in Ref. [28], we con-
sider a dipole emitter oriented along the x axis placed on the
axis of an infinitely long square waveguide with varying edge
length wx � wy and refractive index nw � 3.5 surrounded by
air. Figure 2(a) presents the β factor and the emission rates to
the guided modes and to the radiation modes as functions of
the waveguide size calculated using the dartboard discretization.
The rates are normalized to the bulk emission rate (see
Section 2.B). Figure 2(b) shows the same properties of the
waveguide calculated using an equidistant square sampling, us-
ing either the direct or the inverse factorization rules. The emis-
sion rate to the guided modes calculated with the three
approaches agree well, and in contrast, a clear difference is seen
in the emission rate to the radiation modes, and therefore also
in the β factor. In particular, the coupling to the radiation
modes exhibit a spike around a normalized width of 1.15 with
the square sampling, which gives an unphysical kink in the β
factor. The discretization parameters used in Fig. 2 are given in
the figure caption and were selected as a result of the conver-
gence investigations presented in the following.

To further investigate the performances of the three
approaches, we fix the waveguide geometry by setting the width
to w � 1.15λ∕nw and vary the cutoff value of the transverse
wavenumber as well as the number of modes. This waveguide
size is selected for the convergence investigations since a clear
difference of the results is seen for this diameter in Fig. 2.
Figures 3(a) and 3(b) show the convergence investigations of

-2 0 2
-3

-2

-1

0

1

2

3

Fig. 1. Examples of the discrete mode distributions k⊥ used with
3D oFMM. The blue crosses show the conventional equidistant
discretization, which may have different discretization step sizes for
the x and y directions, i.e., Δkx ≠ Δky . The red dots represent the
dartboard discretization used with the open BC formalism. The solid
line shows a unit circle jk⊥j∕k0 � 1. In this simple example, we have
used kcut−off∕k0 � 3 and 64 modes for both discretization schemes so
that Nx � Ny � 8, and N ϕ � 8, N s � 5, and Δktail∕k0 � 0.4.
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the total emission rate as a function of the cutoff value with
several different mode numbers, while Fig. 3(c) shows the con-
vergence of the total emission rate as a function of the number
of modes N s in the interval �0; 2k0� for the dartboard discre-
tization scheme. The dartboard approach shows clear conver-
gence around a cutoff of ≈15k0. In contrast, the equidistant
discretization scheme does not guarantee convergence, even
with cutoff value of 30k0. The maximum number of modes
used in the calculations of Fig. 3(a) are on the upper limit of
the performance of our high-performance computing (HPC)
cluster computer. This is also the case for the highest number
of modes used in Figs. 3(b) and 3(c). However, in Figs. 3(b)
and 3(c), the convergence is achieved also for the cases with a
smaller number of modes.

When using the equidistant discretization, numerical artifacts
in the form of large oscillations are observed at particular values
of the number of modes and cutoff, as displayed in Figs. 2(b)
and 3(a) [as well as in Figs. 4(b) and 5(a)]. As discussed in
Appendix B, the oFMM, together with the equidistant square
discretization scheme, mathematically corresponds to having
periodic BCs and to using a Fourier series expansion, where
the periodic lengths of the computational domain are inversely
proportional toΔkx andΔky. For geometries with periodic BCs,
destructive or constructive interference due to light emission in
the neighboring periodic elements may occur, leading to the ob-
served large oscillations of the emission rates, which thus are an
inherent consequence of the equidistant discretization scheme.

A common approach to circumvent these artifacts due to
periodic BCs is to use artificial absorbing BCs, often in the form

of the so-called perfectly matched layers (PMLs) [9,10].
However, for the modal method with a PML BC, the conver-
gence of the emission properties with the PML parameters to-
wards the open geometry limit [11,12] is not well-established,
with errors in some cases as high as≈ 20% [13]. In contrast, the
oFMM with the efficient discretization scheme relies on a truly
open computational domain, and therefore avoids using
artificial or periodic BCs, leading to improved accuracy and
convergence towards the true open geometry limit.

B. Reflection from Dielectric Waveguide–Metal
Interface

As a second example, we investigate convergence of the method
for a structure consisting of an infinite waveguide standing on

Fig. 2. Emission from a point dipole placed on the axis of an in-
finitely long square waveguide having widths wx � wy � w. The di-
pole is oriented along the x axis. (a) The normalized emission to the
radiation modes, to the guided modes, and the β factor, calculated
using the dartboard discretization scheme with N ϕ � 14, N s � 180,
kcut−off∕k0 � 15, and Δktail∕k0 � 0.06. (b) The corresponding data
calculated using conventional square sampling and applying both the
direct and Li’s inverse factorization rules with Nx � Ny � 80 and
kcut−off∕k0 � 15. The wavelength used in the calculations is
λ � 1 μm. The total numbers of modes are (a) 5558 and (b) 6400.

Fig. 3. Convergence comparison of the total emission rate using the
three approaches for a waveguide w∕�λ∕nw� � 1.15. (a) The total
emission rate for the equidistant discretization as a function of the cut-
off value computed with the number of modes shown in the legend,
using the direct factorization rule (solid line) and the inverse factori-
zation rule (dashed line). (b) The emission rate as a function of the
cutoff value, computed using the dartboard mode sampling and the
number of angles shown in the legend with N s � 140 modes on
the symmetric radial part with Δktail∕k0 � 0.2. (c) The emission rate
as a function of the number of modes N s in the symmetric sampling
part, computed using the dartboard mode sampling with a fixed num-
ber of angles N ϕ � 16 and cutoff value kcut−off∕k0 � 13.
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top of a metallic mirror by computing the reflection coefficient
of the fundamental guided mode from the waveguide–
metal interface. The refractive indices of the waveguide and
metal are nw � 3.5 and nAg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−41� 2.5i

p
at the wavelength

λ � 1 μm.
Figure 4 shows the calculated reflection coefficient as a func-

tion of the waveguide size wx � wy using (a) the dartboard
sampling and (b) the equidistant discretization, employing
the direct and inverse factorization rules with several different
numbers of discretization modes. The cutoff in all cases is
kcut−off∕k0 � 14. Furthermore, for the dartboard discretiza-
tion, fixed values of N ϕ � 14 and Δktail∕k0 � 0.2 were used,
and only N s was varied. These parameters were chosen to
achieve convergence according to the investigations discussed
in the next paragraph. In narrow waveguides, the reflection co-
efficients are essentially determined by the air–metal reflection
(RAir−Ag ≈ 0.98), since in this limit the fundamental mode is
mainly localized in the air surrounding the waveguide. In con-
trast, in the limit of large waveguides, the fundamental mode is
primarily confined in the GaAs waveguide (RGaAs−Ag ≈ 0.95). A
dramatic difference in the results is seen in the region around
w∕�λ∕nw� ≈ 0.6, where the reflectivity drops due to a surface-
plasmon-mediated coupling, predominantly to radiation
modes propagating in directions perpendicular to the wave-
guide axis [29]. When a substantial amount of light is propa-
gating in the x-y plane, the performance of the open boundary
condition becomes critical, and comparison of Figs. 4(a)
and 4(b) clearly demonstrates that this light emission is better
resolved using the dartboard discretization.

Whereas the reflection coefficients in Figs. 4(a) and 4(b) are
obtained for a fixed cutoff value, we now fix the geometry and
study the effect of the cutoff value of km. We select a waveguide
width of wx � wy � 0.63λ∕nw, since Fig. 4(b) reveals this to

be a challenging computational point. The convergence
investigation is shown in Fig. 5. The dartboard discretization
[Figs. 5(b) and 5(c)] again leads to convergence with respect to
all of the four discretization parameters. In contrast, no clear
convergence is seen when using the equidistant discretization,
while we also in this case approach the performance limit of our
HPC cluster computer. As discussed in the previous section,
the peaks observed in Figs. 4(b) and 5(a) are a consequence
of the periodicity of the computational domain when using the
equidistant discretization scheme.

5. DISCUSSION

The convergence checks in the selected waveguide examples
presented in Figs. 3 and 5 show that our method converges
for the investigated waveguide sizes and structures. The non-
separable nature of our discretization scheme prevents the use
of Li’s factorization rules, but even when using the standard
direct factorization, a clear improvement in the performanceFig. 4. Reflection of the fundamental waveguide mode from a

metal mirror, calculated using (a) the dartboard discretization and
(b) the equidistant discretization. The cutoff in both cases is
kcut−off∕k0 � 14, and for the dartboard discretization, fixed values
of N ϕ � 14 and Δktail∕k0 � 0.2 were used. The legends show the
total number of modes used.

Fig. 5. Convergence of the reflection of the fundamental waveguide
mode from a metal mirror. (a) The reflection as a function of the cutoff
value with number of modes shown in the legend, using the direct
factorization rule (solid line) and the inverse factorization rule (dashed
line). (b) The reflection as a function of the number of modes in the
symmetric sampling part, using the dartboard mode sampling with
fixed N ϕ � 14 and Δktail∕k0 � 0.2, and cutoff value shown in the
legend. (c) The reflection as a function of the number of angles, using
the dartboard mode sampling with fixed kcut−off∕k0 � 14 and
N s � 100, and Δktail∕k0 shown in the legend. Note the different
scaling between (a) and (b)–(c).

Research Article Vol. 34, No. 9 / September 2017 / Journal of the Optical Society of America A 1637



is obtained using the proposed dartboard discretization scheme
compared to the conventional equidistant discretization of the
basis functions. Although these examples do not guarantee the
convergence of our method for all imaginable waveguide sizes
and geometries, we generally expect our method to deliver im-
proved performance for various types of waveguides, possibly
with additional geometry-specific modifications to the discre-
tization scheme.

In high-index-contrast structures such as the examples pre-
sented here, the FMM, due to the difficulty of resolving large
discontinuities using a plane-wave expansion, generally requires
a significant amount of modes to achieve convergence. Whereas
this may not be a computational difficulty in a rotational sym-
metric case, which in the lateral plane reduces to a 1D problem,
the size of the eigenvalue problem in the general planar 2D case
rapidly explodes when the number of modes is increased [13].
Thus, we expect that a further improvement in terms of com-
putational efficiency could be obtained by combining the dart-
board discretization scheme with an adaptive spatial coordinate
scheme [30] or by introducing a semianalytical approach for de-
fining the eigenmodes. In the rotationally symmetric case, exact
analytical descriptions of the eigenmodes exist [26], while in the
rectangular case, approximate solutions [31] could be used.

6. CONCLUSION

We have generalized the recently reported open geometry
Fourier modal method formalism, relying on open boundary
conditions and a non-uniform circular “dartboard” k-space
sampling for general 3D systems, allowing, e.g., the modeling
of rectangular waveguides. By applying open boundary condi-
tions, we avoid using the artificial absorbing BCs. We have
demonstrated the efficiency of the approach by investigating
dipole emission in a square waveguide structure and by study-
ing the reflection coefficient of the fundamental waveguide
mode for a waveguide–metal mirror interface, both of which
are problems of fundamental interest when designing nanopho-
tonic devices. We expect that our new method will prove useful
in accurate modeling of a variety of nanophotonic structures,
for which correct treatment of an open boundary is crucial.

APPENDIX A: DERIVATION OF THE
EIGENVALUE PROBLEM IN 3D OPEN
GEOMETRY

A. Fourier Expansion of the Field Components

The vector components of Maxwell’s equations in Cartesian
coordinates are [7]

∂yEz − iβEy � iωμ0Hx; (A1)

iβEx − ∂xEz � iωμ0Hy; (A2)

∂xEy − ∂yEx � iωμ0Hz; (A3)

∂yHz − iβHy � −iωε0εEx; (A4)

iβHx − ∂xHz � −iωε0εEy; (A5)

∂xHy − ∂yHx � −iωε0εEz; (A6)

where the harmonic time dependence exp�−iωt� of the fields is
assumed and the propagation along the z axis is treated analyti-
cally as exp�iβz�. Thus, the field components in a uniform
layer only depend on the lateral coordinates �x; y� and are
represented as

f �x; y� �
Z

∞

−∞

Z
∞

−∞
cf �kx; ky�g�kx; ky; x; y�dkxdky: (A7)

The basis functions g�kx; ky; x; y� � exp�i�kxx � kyy�� are
plane waves and satisfy the following orthogonality condition,Z

∞

−∞

Z
∞

−∞
g�kx; ky; x; y�g��k 0x ; k 0y; x; y�dxdy

� �2π�2δ�kx − k 0x�δ�ky − k 0y�: (A8)

The expansion coefficients in Eq. (A7) are obtained by multi-
plying with g��k 0x ; k 0y�, integrating over the transverse plane and
using the orthogonality relation (A8), leading to

cf �kx; ky� �
1

�2π�2
Z

∞

−∞

Z
∞

−∞
f �x; y�g��kx; ky; x; y�dxdy:

(A9)

The material properties of the structure are described by the
permittivity and impermittivity functions, which are written
as a sum between a constant background value and a posi-
tion-dependent deviation from the background value, as

ε�x; y� � εB � Δε�x; y�; (A10)

η�x; y� � 1

ε�x; y� � ηB � Δη�x; y�; (A11)

where Δε�x; y� and Δη�x; y� are functions with compact sup-
port, such that Δε � Δη � 0 outside a finite domain.

The expansion coefficients of the Fourier transform of the
permittivity function can then be written as

cε�kx; ky� � εBδ�kx�δ�ky� � cΔε�kx; ky�; (A12)

where

cΔε�kx; ky� �
1

�2π�2
Z

∞

−∞

Z
∞

−∞
Δε�x; y�g��kx; ky; x; y�dxdy:

(A13)

The Fourier transforms of the position-dependent deviations,
Δε and Δη, are thus obtained by calculating finite integrals,
whereas the constant εB and ηB contributions are handled ana-
lytically using Dirac delta functions. Note that the expansion
coefficients cΔε�kx; ky� do not have the same physical dimen-
sion as Δε.

In order to factorize Eqs. (A1)–(A6) by insertion of the ex-
pansion in Eq. (A7), Li’s factorization rules [15–17] should be
considered. Eqs. (A1)–(A3) and Eq. (A6) do not contain any
products between two functions with concurrent jumps (dis-
continuities), and therefore the direct rule applies in these equa-
tions. Considering a rectangular waveguide in free space, the
product εEx;y in Eq. (A4) and (A5) will be discontinuous when
the field is parallel to an interface and continuous for the
direction perpendicular to an interface. In the latter case, both
ε�x; y� and Ex;y�x; y� have concurrent jumps, and the inverse
rule should—ideally—be used.
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B. Direct Factorization Rule

We start by factorizing Eqs. (A1)–(A6) and writing them in a
matrix form one by one. Inserting the function expansion in
Eq. (A7) into Eq. (A1) leads toZZ

�kycEz
�kx; ky� − βcEy

�kx; ky��g�kx; ky; x; y�dkxdky

� ωμ0

ZZ
cHx

�kx; ky�g�kx; ky; x; y�dkxdky; (A14)

where the integration limits (from −∞ to∞) have been omitted
for notational clarity. Multiplying with g��k 0x ; k 0y�, integrating
over x and y, and using the orthogonality relation from
Eq. (A8) lead to

�2π�2
ZZ

�kycEz
�kx; ky� − βcEy

�kx; ky��

× δ�kx − k 0x�δ�ky − k 0y�dkxdky
� �2π�2ωμ0

ZZ
cHx

�kx; ky�

× δ�kx − k 0x�δ�ky − k 0y�dkxdky: (A15)

Performing the integrations in Eq. (A15), we arrive at

kycEz
�kx; ky� − βcEy

�kx; ky� � ωμ0cHx
�kx; ky�; (A16)

which, after discretization of the k space, is written in matrix
form as

kyez − βey � ωμ0hx ; (A17)

where ey is a vector with c
ξ
Ey
as elements. kx and ky are diagonal

matrices with elements kξx and kξy .
Using a similar approach, Eqs. (A2) and (A3) are written in

matrix form as

βex − kxez � ωμ0hy; (A18)

kxey − kyex � ωμ0hz : (A19)

Next we prepare Eq. (A6) in a discretized form in order to
eliminate ez from Eqs. (A17) and (A18), which can also be
performed by applying the direct factorization rule. Expanding
the field components using (A12) and (A13) and performing a
change of variables k̂x;y � kx;y � k 0x;y leads toZZ

�kxcHy
�kx; ky� − kycHx

�kx; ky��

× exp�i�kxx � kyy��dkxdky
� −ωε0

ZZ ZZ
�εBδ�k̂x − kx�δ�k̂y − ky�

� cΔε�k̂x − kx; k̂y − ky��cEz
�kx; ky�

× exp�i�k̂xx � k̂yy��dkxdkydk̂xdk̂y: (A20)

We then multiply with exp�−i�k 0xx � k 0yy��, integrate over x and
y, and employ the orthogonality condition from Eq. (A8) and
obtain

k 0xcHy
�k 0x ; k 0y� − k 0ycHx

�k 0x ; k 0y�

� −ωε0

ZZ
�εBδ�k 0x − kx�δ�k 0y − ky�

� cΔε�k 0x − kx; k 0y − ky��cEz
�kx; ky�dkxdky: (A21)

In discretized form, Eq. (A21) is written as

kxhy − kyhx � −ωε0�ΔεΔk� εBI�ez ; (A22)

where Δε is the Toeplitz matrix containing the elements
cξΔε � cΔε�kξx ; kξy�, I is the identity matrix, and Δk is the diago-
nal matrix containing the discretized area elements Δkξ in k
space. Thus, ez equals

ez � −
1

ωε0
�ΔεΔk� εBI�−1�kxhy − kyhx �; (A23)

allowing us to write Eqs. (A17) and (A18) in the form of an
eigenvalue problem that couples the lateral electric field com-
ponents to the lateral magnetic field components as�

kxε−1Totky −kxε−1Totkx � k20I
kyε−1Totky − k

2
0I −kyε−1Totkx

��
hx
hy

�
� ωε0β

�
ex
ey

�
;

(A24)

where εTot � ΔεΔk� εBI.
From Eqs. (A4) and (A5), we can write a similar set of equa-

tions that couples the lateral components so that Eqs. (A4) and
(A5), together with Eq. (A24), allow us to eliminate the mag-
netic field components and form an eigenvalue problem for the
lateral electric field components (or vice versa). However,
Eqs. (A4) and (A5) need special treatment due to the product
εEx;y.

C. Inverse Factorization Approach

In the following, the application of the inverse rule for open
boundaries with a separable discretization grid in k space will
be presented. As discussed in Appendix B, an equidistant dis-
cretization with an open BC is mathematically equivalent to
implementing a periodic BC and a Fourier series expansion.
Furthermore, as will become apparent in the course of deriving
the inverse factorization for the separable discretization, the in-
verse factorization approach is not applicable for our dartboard
discretization scheme defined in Section 3.

The factorization will be performed on Eq. (A4) to illustrate
how the inverse rule is implemented for the product εEx . The
matrix representation for the ε function used in the product
εEx will be denoted εx , indicating that it accommodates for
continuity of the product along the x direction, where the in-
verse rule is applied as in Refs. [15,17]. Now, Ex is discontinu-
ous in the x direction but continuous in the y direction. ε is
discontinuous in both the x and y directions. Their product,
εEx , is continuous in the x direction and discontinuous in
the y direction; thus the inverse rule is used for the x direction
and the direct rule for the y direction. The way this is done
computationally is to divide the structure into sections sepa-
rated by the interfaces in the y direction and apply the inverse
rule to each of these sections. This is illustrated in Fig. 6.

In general, the expansion coefficients for all �x; y�-
dependent functions are given as in Eq. (A9). The integration
over the y coordinate is then separated into sections where the
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function is uniform along the y axis. Using Fig. 6 as the exam-
ple, the y integration is separated into three parts:

cf �kx; ky� �
1

2π

Z
S1
f x;S1�kx� exp�−ikyy�dy

� 1

2π

Z
S2
f x;S2�kx� exp�−ikyy�dy

� 1

2π

Z
S3
f x;S3�kx� exp�−ikyy�dy; (A25)

where

f x;Si �kx� �
1

2π

Z
f �x; ySi � exp�−ikxx�dx: (A26)

Here the notation f �x; ySi � means that the function is evalu-
ated within section Si and is only dependent on the x coordi-
nate within that section. With this separation, it is possible to
factorize ε using the correct factorization rules provided that the
discretized basis set features separable kx and ky dependency as in
Eq. (11). If this is the case, we can index the kx and ky
contributions to the basis mode k vector as �kmx ; kly� using sep-
arate indicesm and l . It is then possible to apply the inverse rule
to the product εxEx , factorized along the x direction by first
preparing the Fourier transform along the x axis of the inverse
permittivity as

ηx;Si �kx� �
1

2π

Z
∞

−∞
Δη�x; ySi � exp�−ikxx�dx � ηBδ�kx�:

(A27)

We then form the Toeplitz matrix for the ηx;Si function discre-
tized on the kmx grid. Since the product of the expansions of ε
and Ex involves an integration over k space, as in Eq. (A21), the
Toeplitz matrix is given by

ηx;Si ;Tot � Δηx;SiΔkx � ηBI ; (A28)

where Δηx;Si is the Toeplitz matrix containing the elements
Δηmx;Si � Δηx;Si �kmx �, and Δkx is the diagonal matrix with Δkmx
as elements. According to the inverse rule, we then take the
inverse of this matrix and Fourier transform the resulting
elements along the y axis as

εx;mn�ky� �
1

2π

Z
∞

−∞
�ΔηInvx;Tot�mn�y� exp�−ikyy�dy

� εBδmnδ�ky�; (A29)

whereΔηInvx;Tot�y� � η−1x;Si ;Tot − εBI , which is piece-wise constant
over the various regions Si, as discussed above.

The final Toeplitz matrix εx is then obtained by introducing
the discretization on the kly grid, and its elements are given by

�εx�mn;l j �
1

2π

Z
∞

−∞
�ΔηInvx;Tot�mn�y� exp�−i�kly − k

j
y�y�dyΔkjy

� δmnδl jεB: (A30)

Similarly, for the product εyEy, we obtain

�εy�mn;l j �
1

2π

Z
∞

−∞
�ΔηInvy;Tot�l j�x� exp�−i�kmx − knx�x�dxΔknx

� δmnδl jεB: (A31)

The integrals in Eqs. (A30) and (A31) can be carried out ana-
lytically when the matrix ΔηInvx�y�;Tot has been found for each
y�x�-independent section.

The factorizations of Eqs. (A4) and (A5) thus become

ikyhz − iβhy � −iωε0εxex ; (A32)

−iβhx − ikxhz � −iωε0εyey : (A33)

Eliminating hz using Eq. (A19) finally leads to the following
eigenvalue problem:�

−kxky k2x − k20εy
k20εx − k

2
y kykx

��
ex
ey

�
� ωμ0β

�
hx
hy

�
: (A34)

The splitting of the factorization along the x and y axes such
that the inverse rule can be used along the x axis and the direct
rule along the y axis relies on the separability of the kx and ky
dependencies of the discretization grid such that the discretiza-
tion in Eq. (A28) can be performed in a well-defined manner.
However, for our dartboard discretization scheme, this separa-
tion is not possible, and for this reason, we simply use the direct
rule for the factorization with εx � εy � εTot.

APPENDIX B: RELATIONSHIP BETWEEN OPEN
AND PERIODIC BOUNDARY CONDITIONS

To understand the equivalence between the open BC formal-
ism with equidistant discretization and the periodic BC formal-
ism, let us consider the representation of a function f �x� with
compact support such that f �x� � 0 for jxj > L∕2. The con-
tinuous integral expansion of this function is given by

f �x� �
Z

F�k� exp�ikx�dk; (B1)

F �k� � 1

2π

Z
L∕2

−L∕2
f �x� exp�−ikx�dx; (B2)

where the integration domain in Eq. (B2) has been
reduced from �−∞;∞� to �−L∕2; L∕2� since f �x� � 0 outside
this range.

We now implement the equidistant discretization scheme
with a discretization step Δk, such that Eq. (B1) becomes

f �x� �
X
n

F �kn� exp�iknx�Δk; (B3)

where kn � nΔk.

Fig. 6. Waveguide in air is divided into three sections, separated by
the y interfaces of the permittivity function. Here the background per-
mittivity is εB and in the waveguide region Δε�x; y� � εw − εB . The
permittivity is y-independent inside each of the three sections.
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Let us compare this equation to the Fourier series expansion
of the same function over the interval �−L∕2; L∕2� given by

f �x� �
X
n

cn exp�iknx�; (B4)

cn �
1

L

Z
L∕2

−L∕2
f �x� exp�−iknx�dx; (B5)

where kn � n2π∕L. Now, the integral expansion in Eqs. (B1)
and (B2) should ideally reproduce a function f �x� for which
f �x� � 0 for jxj > L∕2. However, we observe that the repre-
sentation in Eq. (B3) implementing the equidistant discretiza-
tion is mathematically equivalent to the standard Fourier series
representation in Eqs. (B4) and (B5) of a periodic function
f �x� � f �x � L�, where the periodicity is given by

L � 2π

Δk
: (B6)

When representing the optical fields using an open BC and
equidistant discretization, we are thus in practice reintroducing
a periodic BC with the associated numerical artifacts due to the
presence of the neighboring elements. The artifacts can be sup-
pressed by decreasing Δk, in which case the Riemann sum rep-
resentation of the Fourier transform approaches the exact value
of the integral. However, this occurs at the expense of signifi-
cant computational cost, and a non-uniform discretization
scheme is thus strongly preferred.
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