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We investigate the symmetry of transmission spectra in a
photonic crystal (PhC) waveguide with a side-coupled cavity
and a partially transmitting element (PTE). We demonstrate,
through numerical calculations, that by varying the cavity-
PTE distance the spectra vary from being asymmetric with
the minimum blueshifted relative to the maximum, to being
symmetric (Lorentzian), to being asymmetric with the mini-
mum redshifted relative to the maximum. For cavity-PTE
distances larger than five PhC lattice constants, we show that
the transmission spectrum is accurately described as the
transmission spectrum of a Fabry–Perot etalon with a single
propagating Bloch mode and that the symmetry of the trans-
mission spectrum correlates with the Fabry–Perot round-trip
phase. © 2016 Optical Society of America
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Photonic crystal (PhC) membrane structures consisting of
waveguide-coupled microcavities represent an attractive plat-
form for applications that can exploit the strong sensitivity
of the transmission on the resonance frequency of the cavity.
Due to the large ratio of quality factor to mode volume of
PhC cavities [1], even small refractive index perturbations
within the volume occupied by the cavity mode lead to signifi-
cant transmission changes. This fact has been used to demon-
strate ultra-low energy all-optical signal processing [2], as well
as chemical and biological sensing [3]. In 2002 [4], it was
shown how a Fano resonance [5] can be achieved in PhC struc-
tures, which further improves the wavelength sensitivity. The
interference between a narrow and broadband state, which
leads to Fano resonances, was implemented with a low- and
high-Q cavity structure for switching purposes [6]. We recently
proposed a simpler geometry [7] and demonstrated that the
shape of the transmission can be controlled [8]. In this
Letter, we expand on these results by showing how both the
parity and shape may be manipulated in a way that is easily
controlled experimentally. The geometry investigated in this

Letter is shown in Fig. 1. We define the parity to denote
whether the minimum of the transmission from the input
to the output waveguide is red or blueshifted relative to the
maximum; see Fig. 2. Different physical mechanisms cause
the cavity resonance shift to be either positive or negative.
In optical signal processing, depending on the preferred modu-
lation format, whether the resonance shift causes an increase or
decrease in transmission is essential. Since this is determined by
the parity of the resonance, our investigated structure is easily
transferred between applications, where different signs of the
resonance shift are demanded.

Figure 1 shows the investigated structure consisting of a
microcavity adjacent to a waveguide containing a partially

Fig. 1. Left: PhC structure and field plot (jHyj) at the minimum
transmission frequency for the PhC Fano structure with hole radius
r � 0.30a, PTE radius rPTE � 0.80r, Fabry–Perot length d � 5a,
refractive index of background material nb � 3.1, and refractive index
of air holes nh � 1. The supercell for the first section is illustrated by
the dotted white line, and the section interfaces are indicated with the
dashed white lines. Right: schematic of the structure with transmis-
sion, reflection, and propagation matrices indicated, where the full
PhC structure is divided into five sections.
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transmitting element (PTE), which was also a key element in
previous proposals [4,7,8]. By shifting the position of the PTE,
both the parity and shape of the transmission spectrum can be
controlled. The PTE is realized by a hole placed in the center of
the waveguide, and the microcavity is simply a point defect, i.e.,
a missing hole. The distance between the microcavity and the
PTE is d , and a is the PhC lattice constant. In [4], a different
structure consisting of a microcavity placed in the center of a
Fabry–Perot cavity composed of two PTEs was investigated
with a single-mode transfer matrix formalism, and it was con-
cluded that whether the transmission spectrum is asymmetric
(Fano-shaped) or symmetric (Lorentzian-shaped) depends on
the spectral position of the microcavity resonance frequency
relative to the Fabry–Perot background. In this Letter, we con-
sider a different structure without a Fabry–Perot background.
We describe the shape of the transmission spectrum as a func-
tion of the distance d using a full multi-mode model, and we
show that the single-mode transfer matrix model in [4] breaks
down in the short distance limit.

The structure investigated here is two-dimensional (invari-
ant along y), and we use a Fourier-based Bloch mode expansion
technique for simulating the transmission [9–11]. The struc-
ture is partitioned into periodic sections, as shown in the right
part of Fig. 1, each with a distinct supercell and set of Bloch
modes, and the expansions are coupled together with a Bloch
mode S-matrix algorithm [9]. Thus, we have direct access to
the individual Bloch modes and their reflection and transmis-
sion coefficients, which plays a key role in the analysis to be
presented here. The Bloch modes are determined in each sec-
tion as in [9,11], and the electromagnetic field is expanded on
these Bloch modes:

Hw�r� �
X
m

�
awmΨH�

wm �r⊥; z� � bwmΨH−
wm�r⊥; z�

�
; (1)

where Hw�r� is the magnetic field in the wth section and awm
[bwm] is the amplitude of the mth forward (�z) [backward
(−z)] propagating Bloch mode, ΨH��−�

wm �r⊥; z�.
The transmission and reflection of the microcavity (PTE)

section are computed by considering sections 1–3 (3–5),
and using the scattering matrix formalism on this reduced
geometry. This effectively reduces the full five-section geometry

to a three-section geometry consisting of three waveguide
sections (1, 3, and 5) coupled through the transmission and
reflection matrices of the microcavity (Tc , Rc) and PTE
(TP , RP) sections. Thereby, the total transmission from input
to output in Fig. 1 is given as [9]

T � TPP��I − RT�−1Tc ; (2)

RT ≡ RcP−RPP�; (3)

where the matrices P� and P− represent propagation in sec-
tion 3 by the length of an integer number of supercells in
the forward and backward directions, respectively. From
Eq. (2), it is clear that the structure in Fig. 1 can be thought
of as a Fabry–Perot cavity, where the microcavity constitutes a
highly dispersive mirror, and this interpretation was previously
used to propose an ultra-high speed laser structure [12]. When
the mirror distance, d , is small enough for the PTE to lie inside
the neighboring supercell of the microcavity, the Fabry–Perot
interpretation no longer makes sense, since this interpretation
requires a waveguide supercell to be in between the supercells of
the PTE and the microcavity. In this case, the structure will
instead be divided into three or four sections (see Fig. 1),
and the total transmission matrix takes a different form.

The transmission spectra for different cavity-PTE distances, d ,
are computed using Eq. (2), and a measure of the degree of parity,
DoP, is defined as the difference between the numericalmaximum
slopeof the transmission spectrumbeforeandafter the transmission
minimum (see the solid markers on the spectra in Fig. 2):

DoP� 2πc
a

�
max

�����∂T∂ω
����
ω<ωmin

�
−max

�����∂T∂ω
����
ω>ωmin

��
: (4)

With this definition, a positive (negative) DoP corresponds
to blue (red) parity and, in Fig. 3, the DoP is plotted for differ-
ent cavity-PTE distances, where the points are color coded ac-
cording to the parity. It is apparent that the parity and shape of
the transmission spectrum can be engineered by the position of
the PTE relative to the microcavity, and very large slopes are
achievable. An example of this is seen in Fig. 2 with d � 6.07a,
where the spectral distance between the maximum and mini-
mum is not limited by the microcavity linewidth, γ, as is the
case for our previously proposed structure with d � 0 [7,8].
A shorter spectral distance between the maximum and minimum

Fig. 2. Transmission spectra for d � 0a (red parity), d � 6.07a
(blue parity), and the microcavity only, where the geometry of the
PhC structure is seen in Fig. 1. The point with maximum slope on each
side of the transmission minimum are indicated with solid markers for
the two Fano spectra. The linewidth of the Lorentzian spectrum is 2γ.

Fig. 3. Degree of parity, DoP [defined in Eq. (4)] as a function of the
cavity-PTE distance, d . The data points are color coded according to the
parity, and the black curve is a guide to the eye. The arrow indicates
the DoP for the transmission spectrum with d � 6.07a in Fig. 2.
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can be obtained, but not while requiringmax�jT j2� � 1 for our
investigated structure.

The relative position of the transmission maximum and
minimum results from the interference between many Bloch
modes bouncing back and forth between the mirrors, as de-
scribed by Eq. (2). Generally, it is not obvious how to deter-
mine the parity by direct inspection of this matrix equation.
However, for sufficiently large d , the coefficients in P� corre-
sponding to evanescent modes are exponentially damped. For
single-mode PhC waveguides, which we restrict the following
analysis to, this means that only one element from the propa-
gation matrices has a significant contribution and, thereby, all
other elements can be neglected. This reduces the transmission
Eqs. (2) and (3) to scalar equations:

T � TPP��1 − RT �−1T c; (5)

RT � RcP−RPP�; (6)
where the (1,1) matrix elements are taken from the full matrices
in Eqs. (2) and (3), since these couple and propagate the guided
mode in the three waveguide sections (the same enumeration of
the modes as in [9] has been used).

In Fig. 4, the transmission spectra found from Eqs. (2) and
(3) (full model) and from Eqs. (5) and (6) (single mode) are com-
pared for four different cavity-PTE distances. At the smallest dis-
tances (top panel), the single-mode model predicts the correct
parity, but otherwise deviates visibly from the numerically exact
spectra, e.g., with a clear offset on the spectral position of the
transmission minimum. As the distance is increased to d �
4a (bottom panel, blue curves), the agreement between the nu-
merically exact and the single-mode model becomes substantially
better, and at the largest distance considered here, d � 5a (bot-
tom panel, magenta curves), the agreement is almost perfect. The
mismatch between the full and the single-mode model is due to
the influence of evanescent Bloch modes in the Fabry–Perot re-
gion. A similar behavior was observed in [13] in describing trans-
mission between a ridge waveguide and a slow light PhC
waveguide, and in [14] in analyzing PhC Ln cavities.

The minimum transmission frequency is shifted for d � 2a
and d � 3a compared to d � 4a and d � 5a in Fig. 4, which
does not seem intuitive, since the transmission of the guided
Bloch mode through the microcavity section is zero at the
resonance frequency of the microcavity for all d ≥ 2a.
However, the scattering of the guided Bloch mode at the

microcavity section will populate evanescent Bloch modes in
the Fabry–Perot section. For large Fabry–Perot lengths, the pop-
ulation of the evanescent Blochmodes will vanish before reaching
the PTE, and no scattering will occur. However, for small distan-
ces, therewill be a finite populationof the evanescentBlochmodes
at the PTE, where they will scatter and populate the guided Bloch
mode in section 5, resulting in a finite overall transmission of the
guidedBlochmode fromsections1 to5at the resonance frequency
of the microcavity. This effect causes the shift of the transmission
minimum for structures with small cavity-PTE distances.

To render Eqs. (5) and (6) more easily interpretable, we
write the propagation constants and T - and R-coefficients as
follows:

P��ω� � P−�ω� � exp�ik�ω�L�; (7)

T P�ω� � tP�ω� exp�iϕt;P�ω��; (8)

RP�ω� � rP�ω� exp�iϕr;P�ω��; (9)

Rc�δ� �
γ

−iδ� γ
� γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 � γ2
p exp�iϕr;c�δ��; (10)

T c�δ� �
−δ

−iδ� γ
� −δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 � γ2
p exp�iϕt;c�δ��; (11)

where L is the distance between the microcavity and PTE
sections, k�ω� is the dispersion of the guided Bloch mode
in the PhC waveguide, ϕt�r�;P are the phases related to trans-
mission and reflection at the PTE, tP � jT Pj and rP � jRP j
are the transmission and reflection amplitudes for the PTE,
and δ � ω − ωmin is the detuning. Finally, γ is half the line-
width of the transmission spectrum of the microcavity (see
Fig. 2), which equals the coupling rate between the microcavity
and the waveguide. The microcavity reflection phase is derived
from Eq. (10), and the result is ϕr;c � arctan�δ∕γ�. Using this
and Eq. (5), we find

jT j2 � jTP j2jT c j2
1� jRP j2jRc j2 − 2jRP jjRc j cos�2kL� ϕr;P � ϕr;c�

� t2Pδ
2

δ2 � �1� r2P�γ2 − 2rPγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 � δ2

p
cos�ΦRT �

;

(12)

where the frequency dependence of all parameters has been sup-
pressed, andΦRT �2K δL�2k�ωmin�L�ϕr;P�arctan�δ∕γ� is
the phase of the round-trip as a function of detuning for a wave-
guide with linear dispersion, where 1∕K is the group velocity.
In the single-mode limit, the transmission vanishes exactly at the
resonance frequency of the microcavity, i.e., at zero detuning
δ � 0, which is evident from Eqs. (11) and (12).

Figure 5 shows the phase of the round-trip element RT in
Eq. (6) at the frequencyofminimumtransmission,ωmin, as a func-
tion of d . The blue (red) dots (crosses) correspond to the structure
having blue (red) parity, where the parity is found from the full
computation using Eq. (2). From our definition of parity in
Eq. (4), it follows that the transition between blue and red parity
occurs when the transmission spectrum is an even function of the
detuning, δ. Equation (12) shows that this can only be achieved, if
cos�ΦRT � is alsoeven,whichoccurswhenΦRT isodd,correspond-
ing to ΦRT �ωmin� � 0� pπ; p ∈ Z. Since the transition only

Fig. 4. Transmission spectra for cavity-PTE distances d � 2; 3; 4,
and 5a using Eq. (2) (full model, solid curves) and Eq. (5) (single-
mode, dashed-dotted curves).
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happens at these values, the parity must have the same sign in the
intervals ΦRT ∈�0; π� and � − π; 0�, which Fig. 5 confirms. The
parity of the transmission spectrum, therefore, is completely deter-
mined by the round-trip phase at the transmission minimum.

However, the above explanation assumes that the transmis-
sion and reflection coefficients for the PTE, tp�ω� and rp�ω�,
are independent of frequency, which, generally, is not the case.
This frequency dependence contributes to the asymmetry of
the transmission spectra but, as seen in Fig. 5, the effect is very
small, since the round-trip phase at ωmin predicts the right par-
ity for all simulations with d > 5a. The above explanation as-
sumes a linear dispersion and, thus, a frequency independent
group velocity. If, in turn, the structure is operated closer to the
band edge of the waveguide, where the group velocity depends
strongly on frequency, this would also affect the symmetry and
could potentially be used as an additional knob to engineer the
shape of the transmission spectrum.

Since the parity depends on the round-trip phase, it is pos-
sible to flip the sign of the DoP by changingΦRT �ωmin�, which
can be done by applying a pump pulse to the waveguide region
in the Fabry–Perot cavity as in [15]. This is shown in Fig. 6,
where the transmission computed from Eq. (12) is plotted us-
ing the parameters for d � 6.08a for ΦRT �ωmin� � 0 and
�π∕4. For this to be possible in an efficient way, the spectral
distance between the maximum and minimum transmission
points should be as small as possible. The investigated structure
is not optimal, since it requires a total phase shift of ∼π∕2 for
switching the DoP and maintaining max�jT j2� � 1. Reducing
the linewidth, 2γ, and the PTE transmission, tPTE, would in-
crease the slope and, thus, reduce the required phase shift for
flipping the DoP while maintaining max�jT j2� � 1.

To conclude, we have analyzed the transmission spectrum of
a photonic crystal microcavity coupled to a partially blocked
waveguide. It was shown that the structure displays Fano reso-
nances and that the symmetry of these can be controlled by vary-
ing the distance between the microcavity and the partially
transmitting element. For sufficiently large distances, a single-
mode description accurately describes the shape of the transmis-
sion spectrum and, in this limit, it was shown that the phase of
the round-trip within the Fabry–Perot cavity determines the par-
ity of the Fano resonance. This limit was identified to be at

d ≃ 5a for the investigated structure. The breakdown of the
single-mode description for d < 5a is due to the increasing in-
fluence of evanescent Bloch modes for smaller Fabry–Perot
cavities. The possibility of fully tailoring the Fano resonance in
photonic crystal microcavity waveguide structures might find ap-
plications, for example, in optical signal processing and sensing.

Our results suggest that the shape of the transmission can be
made extremely sensitive to changes in the round-trip phase.
Therefore, it is interesting to investigate whether the structure is
more susceptible to refractive index changes in the waveguide,
rather than in the microcavity, which is conventionally used
[2,4,6–8].
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Fig. 6. Transmission spectra for ΦRT �ωmin� � π∕4 (blue solid),
ΦRT �ωmin� � 0 (black dotted-dashed), and ΦRT �ωmin� � −π∕4
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