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We present and validate a semianalytical quasi-normal mode
(QNM) theory for the local density of states (LDOS) in
coupled photonic crystal (PhC) cavity–waveguide structures.
By means of an expansion of the Green’s function on one or
a few QNMs, a closed-form expression for the LDOS is
obtained, and for two types of two-dimensional PhCs, with
one and two cavities side-coupled to an extended waveguide,
the theory is validated against numerically exact computa-
tions. For the single cavity, a slightly asymmetric spectrum
is found, which the QNM theory reproduces, and for two
cavities, a nontrivial spectrumwith a peak and a dip is found,
which is reproduced only when including both the two
relevant QNMs in the theory. In both cases, we find relative
errors below 1% in the bandwidth of interest. © 2015
Optical Society of America

OCIS codes: (000.3860) Mathematical methods in physics;

(050.1755) Computational electromagnetic methods; (050.5298)

Photonic crystals; (130.5296) Photonic crystal waveguides;

(140.3945) Microcavities; (140.4780) Optical resonators.

http://dx.doi.org/10.1364/OL.40.005790

Photonic crystals (PhCs), periodic semiconductor systems with
submicrometer structuring, are emerging as important building
blocks in realizing integrated optical circuits and quantum
information networks. Basic PhC elements such as cavities
and waveguides are now well understood and used for photon
localization and transport, respectively, and composite systems
of one or more PhC cavities and waveguides are being explored
for optical switching [1–5], compact lasers [6], single-photon
buffers [7], and optical RAM [8]. Similarly, at the single-
emitter–single-photon level, coupled PhC cavity–waveguide
structures may substantially alter the light–matter interaction
[9], which has been demonstrated experimentally [10,11].

Quasi-normal modes (QNMs) provide a natural and physi-
cally appealing basis for the modeling of light in open and leaky
resonators [12,13]. The QNMs are solutions to the source-free
Maxwell’s equations, satisfying a radiation condition and existing

at discrete and complex frequencies, ω̃μ � ωμ − iγμ. QNMs
explicitly account for the leaky nature of the underlying resonator,
as quantified by the associated quality factor, Qμ � ωμ∕�2γμ�.

QNMmodels of optical resonators have been applied to the
study of shape perturbations [14,15] and Green’s functions [16]
in highly symmetric material systems, for which the QNMs can
be calculated analytically. Recently, the framework has been ap-
plied to more complex dielectric [17,18] and plasmonic [19,20]
resonators of practical interest. In these technologically relevant
material systems, for which the QNMs must be calculated by
numerical means, a description of the optical field in terms of
one or a few QNMs has been shown to provide a simple and
intuitive, yet surprisingly accurate, model. All these successful
applications of QNMs share one important characteristic,
namely the treatment of resonators embedded in a homogeneous
background. Based on the great success of QNM models for

Fig. 1. Electric field magnitudes (jEyj) of two QNMs, M1 and
M2, for a 2D PhC with two cavities side-coupled to an extended
W1 waveguide.
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such systems, it is natural to ask if the theory can be extended to
the technologically relevant case of integrated optical circuits.

In this Letter, we apply the theory of QNMs to set up a
semianalytical model for the (projected) local density of states
(LDOS) in systems where optical cavities couple to waveguides
that act as leaky decay channels for the light. To this end, we
make use of a regularization of the norm that was recently in-
troduced in order to accommodate the divergent nature of the
fields in the waveguides [21]. For a given structure, we compute
one or a few relevant QNMs and normalize these by a regu-
larization of their divergent far field. Once this is achieved, we
can reconstruct the LDOS at any frequency and position in the
vicinity of the cavities, which provides intuitive insights into
LDOS engineering and is more computationally efficient than
full numerical computations. As a proof of principle, we apply
the theory to two-dimensional (2D) PhCs where cavities are
side-coupled to infinite waveguides. We consider first a single
side-coupled cavity (see left inset in Fig. 2), where one QNM
provides an accurate description of the LDOS. As a second and
more advanced example, the double-cavity structure in Fig. 1 is
investigated, and we demonstrate that an approximation
capturing all features of the LDOS spectrum is obtained only
when including both the associated QNMs. The semianalytical
theory is compared to numerically exact computations, and
relative errors <1% are found, both when one and two QNMs
need to be included. Similar configurations with both one
[1–3] and two [5] side-coupled PhC cavities have also been
investigated for optical switching.

In the weak coupling regime, the spontaneous emission rate
of a quantum emitter is proportional to the LDOS that, in turn,
can be expressed in terms of the dyadic Green’s function [22]:

ρα�r;ω� � 2ω

πc2
Im�n̂α ·G�r; r;ω� · n̂α�; (1)

where n̂α is a unit vector in the direction of the dipole moment
of the quantum emitter. Obtaining the LDOS at various posi-
tions and frequencies thus amounts to computing G�r; r;ω�,
which, unfortunately, can only be done in closed form in a very
limited number of simple geometries. In more complex struc-
tures, like the PhCs we focus on here, one needs to resort to
numerical solvers that are less intuitive and computationally
more demanding. As an alternative, we assume that for frequen-
cies close to the cavity resonance frequencies, and at positions in
or close to the cavities, G�r; r 0;ω� may be approximated by an
expansion on one or a few QNMs. The QNMs are computed
and normalized at their discrete frequencies once and for all,
and following an approach similar to that of [19], for example,
one can then expand the Green’s function as

G�r; r 0;ω� � c2

2

X
μ

Eμ�r� ⊗ Eμ�r 0�
ω̃μ�ω̃μ − ω�

; (2)

where Eμ�r� is the normalized electric field of the μth QNM. By
inserting the expression in Eq. (2) into Eq. (1), we obtain a semi-
analytical QNM representation of the LDOS:

ρα�r;ω� � ω

π

X
μ

Im

�
n̂α ·

Eμ�r� ⊗ Eμ�r�
ω̃μ�ω̃μ − ω�

· n̂α

�
: (3)

In many coupled cavity–waveguide systems of interest, a
single or a few QNMs dominate, and retaining only these
in the expansion in Eq. (3) provides a compact and accurate
approximation of the LDOS that is more transparent and easier
to obtain than a fully numerical computation of the Green’s

function. Importantly, we do not seek a representation of the
Green’s function or the LDOS at all positions or frequencies.
Therefore, we do not formally rely on a completeness relation for
the QNMs, but rather consider the finite sum in Eq. (3) to be an
approximation, which we show below to be extraordinarily good.
The work that remains to obtain the LDOS is thus to compute
and normalize the QNMs, which we detail in the following.

For resonators surrounded by bulk, the radiation condition
that the QNMs must satisfy is the so-called Silver–Müller radi-
ation condition [13]. When a resonator is coupled to an extended,
structured environment, like cavities coupled to an extended
waveguide, the Silver–Müller radiation condition is not the cor-
rect choice of QNM radiation condition. Instead an outgoing
waveguide mode radiation condition must be imposed with only
outgoing fields in the waveguide [23]. This condition can be im-
posed by use of modal expansion techniques [23,24] or by a non-
local boundary condition, applicable to standard frequency
domain methods [21]. Here, we use the modal expansion tech-
nique and roundtrip matrix method proposed in [23] for com-
puting the complex QNM frequencies and associated field
distributions. Afterward, we normalize the QNMs following
the procedure in [21], where the spatial integration is split into
a finite integration area (volume in 3D) around the cavities and an
infinite integration area (volume in 3D) for the extended wave-
guide. The former contribution is well behaved and straightfor-
wardly evaluated numerically, while the latter is formally
divergent, but can be regularized [25] using the theory of diver-
gent series; see all details in [21]. This procedure yields the QNM
normalization integral, hEμjEμi, defined in [21].

For the specific examples, we consider 2D PhCs, invariant
along the y axis, with high-index rods (ϵRods � 8.9, radius
r∕a � 0.2) in a rectangular lattice with lattice constant a and
surrounded by air. This structure has a bandgap for the out-of-
plane polarization (E � Eyŷ), and, by leaving out one row of
rods, a W1 waveguide is created. In the following, we consider
two examples of one or more cavities side-coupled to this wave-
guide; the associated QNMs are leaky due to coupling to the
waveguide. In the method from [23], we discretize each PhC
rod with NR = 128 staircase layers, in which we use NF = 101
Fourier terms in the field expansions. We have checked the
accuracy with these parameters and the spatial resolution in
computing the QNM normalization integrals, and all numbers
are expected to be accurate to the quoted number of digits.

As a first example, we consider a single side-coupled cavity
positioned a distance d cav � 2a from the waveguide, see the
left inset in Fig. 2. This structure supports a single QNM at
ω̃μa∕�2πc� � 0.397 − 0.0014i, which has an electric field
maximum in the center of the side-coupled cavity at rD. The
associated complex mode area (volume in 3D) is found to
be aμ � hEμjEμi∕�ϵ�rD��Eμ�rD� · ŷ�2� � �1.441 − 0.055i�a2.
Since this QNM dominates for this structure at rD, it suffices
to retain just one term in Eq. (3) of the LDOS QNM expansion:

ρyPhC�rD;ω� �
ω

π

1

ϵ�rD�
Im

�
1

ω̃μ�ω̃μ − ω�
1

aμ

�
; (4)

which can be expressed more explicitly as

ρyPhC�rD;ω��
ω

π

1

ϵ�rD�
1

jω̃μj2
1

jaμj2
1

�ω−ωμ�2�γ2μ

×
�
Re�aμ��2ωμ−ω�γμ�Im�aμ��ωμ�ω−ωμ��γ2μ�

�
:

(5)
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This expression is the product of a linear function in ω, a
Lorentzian, and the term in the curled brackets that depends on
the signs and relative magnitudes of Re�aμ� and Im�aμ�. The ex-
pression in Eq. (5) constitutes a semianalytical single-QNM
approximation to the LDOS at rD for the PhC structure consid-
ered here. The associated bulk LDOS is [26] ρyBulk�ω� � ω∕
�2πc2�, and evaluating the LDOS approximation in Eq. (5) on
resonance (ω � ωμ), we find the Purcell factor

Fy
P ≡

ρyPhC�rD;ωμ�
ρyBulk�ωμ�

� 1

π2

�
λ0

n�rD�

�
2 Qμ

Aeff

; (6)

where ωμ∕c � 2π∕λ0, and where we discarded a small term
γ2μ ≪ ω2

μ. The effective mode area (volume in 3D), 1∕Aeff≡
Re�1∕aμ�, was defined in [18], and the expression in Eq. (6)
shows that the Purcell formula can be rigorously derived within
the framework of QNMs when a single of these dominates the
Green’s function expansion [18]. Heuristically, it may be appeal-
ing to approximate the single-QNM LDOS enhancement with a
Lorentzian curve parametrized with the QNM frequency and the
Purcell factor

ρyPhC�rD;ω�
ρyBulk�ω�

� Fy
P

γ2μ
�ω − ωμ�2 � γ2μ

: (7)

In Fig. 2, the solid black curve shows the LDOS approxi-
mation in Eq. (5), while the dashed red curve is the Lorentzian
approximation in Eq. (7). Numerically exact 2D simulations,
obtained using a Fourier modal method (FMM), Bloch mode
expansion, and S-matrix technique [27,28], are shown as the
blue circles. It is apparent that both the single-QNM and the
Lorentzian curves approximate the exact spectrum fairly well,
but by closer inspection it is also seen that only the rigorous
single-QNM approximation [black curve, Eq. (5)] picks up
the slight asymmetry of the spectrum, which, by construction,
the symmetric Lorentzian does not. Since, in this case, the real
part of aμ is much larger than the magnitude of the imaginary

part, we can, to a good approximation, neglect the second term
in the curled brackets in Eq. (5). The slight deviation from the
Lorentzian shape of the spectrum thus stems from the first term
in the curled brackets, leading to a super (sub) Lorentzian
dependence on the red (blue) side of the peak. To be quanti-
tative on the agreement, the right inset in Fig. 2 shows the rel-
ative errors as a function of frequency. Close to the QNM
frequency, both approximations provide small errors below
1%, and while the error from the Lorentzian curve quickly in-
creases away from the resonance, the error from the rigorous
expression in Eq. (5) remains below 1% in most of the consid-
ered spectral range. This demonstrates the power of the QNM
approach for obtaining accurate LDOS approximations, as also
seen in resonators coupled to homogeneous media [17–20].

As a second and more advanced example, we consider the
same structure as above, but now add in an additional side-
coupled cavity at a distance d cav � 3a from the waveguide
and a distance dW1 � 4a along the waveguide from the initial
cavity. This structure supports two QNMs in the spectral range
of interest, called M1 and M2, whose electric field magnitudes
(jEyj) are shown in Fig. 1, where the leakage into the W1 wave-
guide is clearly visible. The complex QNM frequencies are
ω̃M1a∕�2πc� � 0.397 − 0.0013i and ω̃M2a∕�2πc� � 0.395−
0.00020i, i.e., the two QNMs are offset by approximately
5 nm, while the Q factor for M2 is approximately an order of
magnitude larger than that for M1. Since the two QNMs lie
relatively close spectrally, and since each QNM has a nonnegli-
gible field strength in the adjacent cavity, it is natural to expect
that they will both play a role in the QNM-approximated
LDOS spectrum.

To investigate this structure, we consider a y-oriented dipole
in the center of the cavity, where M1 has its field maximum (see
left inset in Fig. 3), and for which we find aM1 � hEM1jEM1i∕
�ϵ�rD��EM1�rD� · ŷ�2�� �1.388 − 0.026i�a2 and aM2 �hEM2j
EM2i∕�ϵ�rD��EM2�rD� · ŷ�2� � −�28.7� 12.5i�a2. For both
mode areas, the fields are evaluated at the same position,

Fig. 3. Spectrum of LDOS enhancement for a y-oriented dipole,
ρyPhC∕ρ

y
Bulk , for the two-cavity configuration in Fig. 1 that also shows

field profiles of the two QNMs, M1 and M2. The dipole is positioned
in the center of the bottom PhC cavity, rD � �−2; −2�a. The spectrum
is approximated with a sum over single-QNM terms [Eq. (5)], with
the dashed red (dotted green) [solid black] curve obtained with QNM
M1 (M2) [M1�M2] included, while numerically exact 2D FMM-
Bloch mode-dipole computations are shown as blue circles. The inset
shows the relative error for the QNM M1�M2 approximation.

Fig. 2. Spectrum of LDOS enhancement for a y-oriented dipole,
ρyPhC∕ρ

y
Bulk , positioned in the center of a PhC cavity side-coupled

at distance d cav � 2a to a W1 waveguide. The spectrum has been ob-
tained with the single-QNM approximation in Eq. (5) (solid black),
with the Lorentzian fit in Eq. (7) (dashed red), and with numerically
exact 2D FMM-Bloch mode-dipole computations (blue circles). The
right inset shows the relative errors for the QNM approximation
(black) and the Lorentzian fit (red).
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and the emitter is thus spatially offset from the M2 field maxi-
mum. We note that for M1 the real part of the complex mode
area again dominates and is positive, while for M2 the real and
imaginary parts are of the same order of magnitude and are
both negative. Also, we find that jhEM1jEM2ij∕jhEM1jEM1ij≃
10−6, i.e., QNMs M1 and M2 are orthogonal under the inner
product from [21]. Using the complex mode areas, we may
approximate the LDOS by retaining QNM M1 (dashed red),
QNM M2 (dotted green), or QNMs M1�M2 (solid black)
in a sum over the single-QNM contribution [Eq. (5)], as shown
in Fig. 3. Blue circles again show the numerically exact LDOS
enhancement. The exact spectrum features a Lorentzian-like
peak close to the M1 QNM frequency and a dip close to the
M2 QNM frequency.

The approximation with only M2 included (dotted green) is
negative in a large part of the spectrum, which arises from the
negative real and imaginary parts of aM2. Furthermore, while
the first term in the curled brackets in Eq. (5) remains negative
in the entire spectrum, the second term changes sign at ωM2,
causing the asymmetric line shape. The approximation with
only QNM M1, for which aM1 is dominated by its real part,
approximates the peak fairly well (dashed red), but does not
capture the dip close to the M2 frequency. In turn, by including
both M1 and M2 (solid black), both features are approximated
very well. Close to the M2 frequency the emitter is spectrally
(spatially) resonant, but spatially (spectrally) nonresonant with
M2 (M1), and we here observe destructive interference be-
tween the M1 and M2 terms in the LDOS expansion, which,
compared to the single-cavity situation (Fig. 2), lowers the
LDOS enhancement. The inset shows that the M1�M2 rel-
ative error remains smaller than 1% in almost all of the con-
sidered spectral range, which also demonstrates that when more
than one QNM is relevant, the semianalytical QNM theory
proposed here for coupled PhC cavity-waveguide structures
is accurate and efficient.

In conclusion, we have demonstrated and validated a semi-
analytical quasi-normal mode theory for the local density of
states in coupled photonic crystal cavity–waveguide structures.
The theory relies on a quasi-normal mode expansion of the
Green’s function, and once the relevant quasi-normal modes
are obtained, this expansion gives the Green’s function and
thus the local density of states at positions and frequencies
close to those of the cavities. As a proof of principle, we have
demonstrated the theory for two two-dimensional photonic
crystal structures where one or two cavities are side-coupled
to an extended waveguide. With one cavity, a single quasi-nor-
mal mode suffices to approximate the numerically exact local
density of states enhancement, with relative errors <1%, and
also picks up a slight asymmetry in the exact spectrum. With
two cavities, it is found that two quasi-normal modes are
needed to accurately approximate all features of the nontrivial
spectrum, and relative errors also here remain <1%. We fore-
see that this theory can be useful for analyzing light–matter
interactions in more complicated structures—for example, in-
cluding several waveguides [29]—and extension to three-di-
mensional systems, where full numerical computation of
spectra is extremely demanding, should be possible, though
also with an increased complexity in the once-and-for-all com-
putation of the relevant quasi-normal modes.
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