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Abstract
We present a new method for determining quasi-normal
modes in open nanophotonic structures using a modal ex-
pansion technique. The outgoing wave boundary condition
of the quasi-normal modes is satisfied automatically without
absorbing boundaries, representing a significant advantage
compared to conventional techniques. The quasi-normal
modes are determined by constructing a cavity roundtrip
matrix and iterating the complex mode wavelength towards
a unity eigenvalue. We demonstrate the method by deter-
mining quasi-normal modes of cavities in two-dimensional
photonic crystals side-coupled to W1 waveguides.

1. Introduction
In micro- and nanostructured media, such as micropillars
and photonic crystals (PhCs), characteristic feature sizes are
on the order of the wavelength of light which makes analy-
sis of light propagation in these systems intricate. Design
of such structures therefore relies on an interplay between
theory, computations and fabrication, and to avoid analysis
and design based on trial-and-error transparent and efficient
numerical methods are indispensable. In open structures, the
natural modes are so-called quasi-normal modes which are
solutions to the frequency domain wave equation satisfying
an outgoing wave boundary condition (BC) [1]. Numerical
modeling often includes artificial BCs to ensure finite-sized
computation domains, needed to handle the computations
in computers. Simple choices include Dirichlet and peri-
odic BCs that give rise to normal modes which, however,
suffer from parasitic reflections at the artificial boundaries.
These unwanted effects can to some extent be suppressed by
means of absorbing boundaries like perfectly matched layers
(PMLs) [2], but their implementation remains problematic,
in particular in geometries featuring infinite periodic struc-
turing like PhCs. The outgoing wave BC is thus difficult to
satisfy with conventional spatial discretization techniques
like the finite-difference time-domain (FDTD) method and
the finite element method (FEM) due to their need for ab-
sorbing BCs.

In this work, we present a new method for determining
quasi-normal modes using a modal expansion method [3,
Chap. 6], a scattering matrix approach [4] and Bloch modes
of periodic structures [5, Chap. 3]. In Fig. 1, two quasi-
normal modes in two-dimensional PhC cavities are dis-
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Figure 1: Quasi-normal mode field distribution (|Ey| [a.u.])
in cavity side-coupled to W1 waveguide in two-dimensional
rectangular lattice PhC. The complex mode wavelengths
are λ0/a = 2.53 + 0.0087i (top panel) and λ0/a = 2.55 +
0.000064i (bottom panel), with a = 0.4µm being the PhC
lattice constant and εRods = 8.9 and εBack = 1.

played. Light propagates in the z-direction, and as detailed
in the following sections the outgoing wave BC in this direc-
tion is satisfied automatically; this represents a significant
advantage of the new method.

2. Bloch mode expansions and quasi-normal
modes

2.1. Bloch modes and scattering matrices

In the modal expansion technique used here [3, Chap. 6],
the structure to be analyzed is sliced into periodic sections
along a chosen propagation direction, taken here as the z-
direction. The periodicity along z, with period a, implies



that the electromagnetic fields in each section w can be
expanded on Bloch modes ewj (r⊥, z),

Ew(r) =
∑
j

cwj e
w
j (r⊥, z), (1)

that are quasi-periodic functions of the z-coordinate [5,
Chap. 3]

ewj (r⊥, z + aw) = exp(ikwj a
w)ewj (r⊥, z), (2)

where kwj is the wavenumber of the jth Bloch mode. This
wavenumber is purely real for a propagating Bloch mode
while inside a bandgap it has a finite imaginary part giving
rise to exponentially decaying waves. For uniform sections,
like translation invariant ridge waveguides, the Bloch modes
become the well-known waveguide modes, but the descrip-
tion using the more general Bloch modes provides a power-
ful framework for analyzing, for example, PhCs. The Bloch
mode form in Eq. (2) holds the analytic z-dependence of
the electromagnetic fields, and this is what allows to satisfy
the outgoing wave BC of the quasi-normal modes in the
z-direction without using artificial BCs. In Eq. (1), cwj are
expansion coefficients determined to satisfy the electromag-
netic BCs across section interfaces. This is handled using a
scattering matrix formalism [4], which in particular relates
the incoming and outgoing Bloch mode amplitudes via the
total scattering matrix S

cout = Scin. (3)

2.2. Quasi-normal modes

It has been suggested that quasi-normal modes in nanopho-
tonic structures can be calculated as non-zero solutions cout
of Eq. (3) for a vanishing input cin = 0 [6, 7]. This yields
the following equation

S−1(λ0)cout = 0, (4)

where we have written the wavelength dependence of the
inverse scattering matrix explicitly. This equation, in gen-
eral, only has non-trivial solutions at complex values of λ0,
the quasi-normal mode complex wavelength. The search for
these complex wavelengths is in principle straightforward,
but for advanced structures that require the inclusion of a
large number of modes the associated scattering matrix is
comparatively large, and the construction of the inverse scat-
tering matrix in Eq. (4) may be complicated and unstable.

In this context, we suggest a new and simpler formula-
tion for determining the quasi-normal modes. For a given
structure, the relevant cavity section wc is identified, and the
cavity roundtrip matrix [8] Mwc is constructed

Mwc(λ0) ≡ RbotPwc
− RtopPwc

+ , (5)

where Rbot (Rtop) is the scattering reflection matrix be-
tween the cavity section and the bottommost (topmost) sec-
tion. Pwc

+ and Pwc
− are diagonal matrices accounting for the

propagation of the Bloch modes through the cavity section.

At real wavelengths, the eigenvalues of Mwc have abso-
lute values below unity since the reflectivities of the mirrors
surrounding the cavity section are smaller than unity; in
every roundtrip, a fraction of the light leaks out of the cavity
and into the mirrors. However, by analytically continuing
the definition of Mwc into the complex wavelength plane it
is possible to compensate the mirror losses by making the
elements in the propagation matrices Pwc

+ and Pwc
− larger

than unity. We therefore iterate the complex wavelength λ0
to find an eigenvalue of Mwc equal to unity; the associated
eigenvector gives the quasi-normal mode distribution in the
cavity section

Mwc(λ0)c
wc = cwc . (6)

The finite imaginary part of the quasi-normal mode wave-
length gives rise to a finite Q-factor of the mode [9, Chap.
11]

Q =
Re(λ0)

2Im(λ0)
, (7)

and also means that the quasi-normal modes diverge when
propagating outwards; this renders the associated mode vol-
ume non-trivial to calculate [10, 11].

3. Example: W1 waveguide and side-coupled
cavity in rectangular lattice photonic crystal

We consider two-dimensional structures that are uniform and
infinitely extended in the y-direction. In this case, Maxwell’s
equations decouple into TE- and TM-polarizations in which
the fields may be described completely by the scalarsEy and
Hy , respectively. We focus on two-dimensional rectangular
lattice PhCs with dielectric rods (εRods = 8.9) suspended in
free-space (εBack = 1). This structure is known to possess
a TE-bandgap [5, Chap. 5], with the electric field having
only its y-component Ey non-zero. By removing one row of
holes a W1 waveguide is created, and for wavelengths inside
the bandgap light may be guided through this waveguide.
By furthermore removing one rod in the bulk of the PhC
lattice and in the vicinity of the waveguide a cavity is formed,
see Fig. 1; we here focus on determining the quasi-normal
modes of this structure.

We first crudely locate the quasi-normal mode spectrally
by calculating the transmission of the guided Bloch mode
through the structure; a dip in the transmission spectrum in-
dicates the excitation of the cavity mode. Subsequently, we
use the spectral position of the transmission minimum as a
starting point for the iteration using a Newton-Raphson algo-
rithm towards a complex wavelength that gives an eigenvalue
of unity for Mwc(λ0). We do the above for two positions
of the cavity; separated by one rod and by three rods from
the waveguide. The quasi-normal mode distributions (|Ey|)
are shown in the top and bottom panels of Fig. 1, respec-
tively, and the associated quasi-normal mode wavelengths
are λ0/a = 2.53 + 0.0087i and λ0/a = 2.55 + 0.000064i,
respectively, with a = 0.4µm being the PhC lattice constant.
We note that both modes have roughly the same real part of
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the mode wavelength, while the imaginary part decreases as
the cavity is moved further away from the waveguide. Using
Eq. (7), the Q-factors are found to be Q = 145 (top panel)
and Q = 19820 (bottom panel), and for this structure we
gain approximately an order of magnitude in Q when the
cavity is moved a lattice constant away from the waveguide.

We have tested the method with other structures that
exhibit lower Q-factors, and this in general challenges the
numerical stability of the formalism since it corresponds to
wavelengths with comparatively large imaginary parts. We
have, however, been able to determine modes with Q as low
as 25, and this demonstrates that the method can be useful
for plasmonic structures, that usually feature low-Q modes,
as well.

4. Conclusion
We have proposed a new method for determining quasi-
normal modes in open nanophotonic structures using a Bloch
mode expansion approach. The scheme relies on an iteration
of the complex quasi-normal mode wavelength to determine
a unity eigenvalue of the cavity section roundtrip matrix.
The unity eigenvalue approach is analogous to the lasing
condition in laser cavities and is thus more intuitive, more ef-
ficient and simpler than other methods that rely on inversion
of the total scattering matrix. The use of modal expansion
techniques to determine quasi-normal modes as compared
to conventional techniques like FDTD and the FEM is ad-
vantageous since the outgoing wave BC of the quasi-normal
modes can be satisfied automatically and without artificial
absorbing boundaries. We have demonstrated the use of our
method by determining quasi-normal modes in side-coupled
cavities in two-dimensional rectangular lattice PhCs, and
we have discussed the effect of the cavity position with re-
spect to a nearby W1 waveguide on the quasi-normal mode
Q-factor.
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