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We present a numerical method for calculating quasi-normal modes of open nanophotonic structures. The method
is based on scatteringmatrices and a unity eigenvalue of the roundtripmatrix of an internal cavity, andwe develop
it in detail with electromagnetic fields expanded on Bloch modes of periodic structures. This procedure is simpler
to implement numerically and more intuitive than previous scattering matrix methods, and any routine based on
scattering matrices can benefit from the method. We demonstrate the calculation of quasi-normal modes for two-
dimensional photonic crystals where cavities are side-coupled and in-line-coupled to an infinite W1 waveguide,
and we show that the scattering spectrum of these types of cavities can be reconstructed from the complex quasi-
normal mode frequency. © 2014 Optical Society of America
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1. INTRODUCTION
Resonant modes are central in nanophotonics and quantum
optics and pave the way for enhanced light–matter inter-
actions with potential applications in energy efficient
photovoltaics, integrated photonic circuits, and quantum in-
formation technology. Examples of resonant modes include
the well-known Mie resonances of spherical objects [1,2]
and localized surface plasmons of plasmonic nanoparticles,
with applications in photovoltaics [3], surface-enhanced
Raman scattering [4], or as “plasmon rulers” [5]. Likewise,
the optical modes of microcavities in micropillars or photonic
crystals (PhCs) have been used for enhancement of the Pur-
cell effect of quantum emitters [6] and for realizing cavity
quantum electrodynamics experiments [7] and single-photon
emission [8,9], as well as for demonstrating nanolasers [10]
and optical switching [11]. Inherent to the resonant modes
is their leaky nature; they dissipate energy into heat or by ra-
diation into the environment. The leakiness is typically quan-
tified via the Q factor, which measures the stored energy
relative to the energy lost per cycle [12], and resonant modes
of realistic resonators always exhibit finite Q factors.
Throughout the literature, the resonant modes are typically
calculated in an indirect way using standard time domain
or frequency domain methods; in the time domain, short
pulses are used to excite the resonant modes, and in the fre-
quency domain, scattering calculations are used to excite the
resonant modes at different frequencies. Innate to these pro-
cedures is an ad hoc choice of the spatial shape and polari-
zation of the excitation pulse or field to excite the resonant
modes, which is well-known to pose problems when degener-
ate or spectrally close resonant modes exist in the structure
under consideration. Also, certain classes of modes may not

respond to the chosen excitation; for example, “dark modes”
of plasmonic structures do not respond to excitations from
the far-field, such as plane waves [13]. Additionally, methods
in both the time domain and the frequency domain suffer from
the difficulty of resolving time signals or spectra sufficiently to
obtain accurate values of Q for underlying high-Q modes.

As a typical frequency domain calculation, Fig. 1 shows the
power reflection spectrum of the propagating Bloch mode of a
W1 defect waveguide in a two-dimensional (2D) PhC due to a
side-coupled defect cavity. These types of coupled PhC–
waveguide–cavity structures are promising candidates for

Fig. 1. Spectrum of power reflection R of a propagating Bloch mode
in a W1 defect waveguide in a 2D rectangular PhC lattice. The inset
shows the structure and the field distribution at the reflection maxi-
mum. The reflection is due to destructive interference between the
propagating waveguide field and the cavity mode. The black crosses
are obtained from scattering calculations, whereas the blue solid
curve is obtained from Eq. (15) and the complex frequency of the as-
sociated QNM. More details on the structure andmodeling parameters
are given in Section 3 and Table 1.
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realization of optical switching [11,14–17]. The inset shows
the structure and the field distribution at the reflection maxi-
mum, and the excitation of a resonant cavity mode is clearly
visible inside the cavity. The Q factor is often deduced from
this type of scattering calculation as [18]

Q � ωR

FWHM
; (1)

where ωR and FWHM are the center frequency and the full
width at half-maximum of the Lorentzian spectrum, respec-
tively, as indicated in Fig. 1. This follows from the assumption
of a time-decaying resonant mode, whose electric field at a
fixed position inside the cavity behaves as a damped harmonic
oscillator in the time domain:

E�t� � E0 exp�−i ~ωt�; ~ω ≡ ωR − iγ; γ > 0; (2)

where ~ω is a complex-valued frequency.
An alternative description exists, in which the resonant

modes are calculated explicitly as the time-harmonic solu-
tions of the source-free Maxwell equations that satisfy an
outgoing wave boundary condition (BC) (or radiation condi-
tion). This choice of BC renders the frequency domain wave
equation problem non-Hermitian and leads to a discrete spec-
trum of complex mode frequencies ~ω. These solutions are the
so-called quasi-normal modes (QNMs). Via the harmonic time
dependence [see Eq. (2)], this corresponds to temporally

decaying modes and thus to an explicit description of the
leaky nature of the resonance, with the Q factor given as [19]

Q � ωR

2γ
: (3)

In turn, the modes are spatially diverging, describing “the
propagating front of the decaying state” [20]. The spatial diver-
gence of the QNMs renders them nontrivial to normalize, but a
rigorous normalization scheme was developed in [21,22] for
simple systems. This result was used in [23] to introduce a
generalized effective mode volume for leaky optical cavities,
and in [24] Sauvan et al. elegantly employed the reciprocity
theorem to derive an alternative formulation of the normali-
zation and mode volume in dispersive media. These formula-
tions have been shown to be equivalent [25]. Recently, a
practical scheme for normalizing QNMs was proposed in
[26]. QNMs have been used for modeling of several resonant
nanophotonic structures: in [27,28] QNMs were calculated
and used for analysis of one-dimensional (1D) finite-sized
PhCs, in [24] decay rates of dipole emitters in the vicinity
of three-dimensional (3D) plasmonic resonantors were pre-
dicted accurately using QNMs, in [26] QNMs were applied
to study scattering properties of propagating fields (plane
waves, for example), and in [13] QNMs were determined and
discussed as localized surface plasmons of 3D plasmonic
dimers. All these examples of QNMs from the literature per-
tain to finite-sized structures surrounded by homogeneous
environments. In this article, we determine QNMs of cavities
coupled to infinitely periodic PhC waveguides. For more de-
tails on QNMs in general physical systems, see the review in
[29], and for a recent review on the use of QNMs in nanopho-
tonics and plasmonics, see [30].

An intricate part of QNM calculations is to satisfy the out-
going wave BC. For spatial discretization techniques, like the

finite-difference time-domain (FDTD) method [31] and the
finite element method (FEM) [32], this BC is notoriously dif-
ficult to implement and is typically approximated using so-
called perfectly matched layers (PMLs) [33]. In contrast,
Green’s function techniques can lead to solutions satisfying
the outgoing wave BC analytically, and the QNMs can be de-
termined as nontrivial solutions of “excitation-free” volume
[13,23] or surface [34] integral equations. Green’s function
techniques are well-suited for treating the outgoing wave BC,
but in turn have difficulties in handling large complex-shaped
geometries like the PhC membrane. As an alternative, modal
expansion and scattering matrix techniques [35] have been ef-
fectively used for treating these kinds of structures. The total
scattering matrix S relates the outgoing to the incoming fields,
and the QNMs can be defined as the nontrivial output for van-
ishing input:

jouti � Sjini; jini → 0; (4)

with solutions of Eq. (4) existing at complex frequencies
where S has a pole [36]. This was used for determining QNMs
in PhC slabs in [20], and pole expansions of the scattering ma-
trix have been proposed for determining QNMs in both PhC
[37] and metallic [38] slabs. Similarly, a linearization of the in-
verse scattering matrix in connection with the Fourier modal
method (FMM) has been developed for determining QNMs
of periodic metallic systems [39]. However, for complex
geometries, the scattering matrix is comparatively large,
and inverting this large and singular matrix is computationally
demanding.

In this article, we propose a simple technique for determin-
ing QNMs using scattering matrices. The method is based on
the definition of an internal cavity section and an iteration of
the complex frequency toward a unity eigenvalue of the asso-
ciated cavity roundtrip matrix. This is equivalent to the well-
known laser oscillation condition, employed when analyzing
lasers, and similar procedures have been used to analyze and
design micropillar cavity structures [40,41]. Practically, the
method is advantageous since it avoids the numerical calcu-
lation of an inverse scattering matrix. We develop the method
using a Bloch mode expansion technique for periodic struc-
tures, but the procedure can be used with any routine based
on scattering matrices. The method can be used for determin-
ing QNMs of finite-sized structures, but by use of Bloch mode
expansions it can, in particular, also be used for determining
QNMs in infinitely periodic structures, which we demonstrate
for two types of PhC cavities coupled to waveguides.

The article is organized as follows. Section 2 introduces the
modal expansion and scattering matrix techniques for deter-
mining QNMs. The generic form of the structure as treated
with these methods is presented, and the Bloch mode expan-
sions are introduced. The mathematical definition of the
QNMs is given, and finally the method for determining QNMs
based on the inverse scattering matrix is reviewed, and the
new method based on the cavity roundtrip matrix is pre-
sented. In Section 3, example calculations of QNMs using the
cavity roundtrip matrix method are provided. Specifically, we
determine QNMs of two types of 2D PhC cavity structures and
discuss their Q factors and spatial distributions. Section 4
concludes the work. Appendices A and B provide additional
details on the determination of Bloch modes and on the
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equivalence between the scattering matrix and roundtrip
matrix methods, respectively.

2. BLOCH MODE EXPANSIONS,
SCATTERING MATRICES, AND
QUASI-NORMAL MODES
In this section, we present the computational framework
for calculating QNMs using a cavity roundtrip matrix. In
Section 2.A, we introduce the generic form of the structures
and present the Bloch mode expansions of the electromag-
netic fields. Having introduced the general framework, we
use Section 2.B to state the equations satisfied by QNMs, in
particular for the infinitely periodic structures to be analyzed
in Section 3. Finally, Section 2.C reviews the methods for cal-
culating the QNMs based on the total scattering matrix and
outlines the details of the new method for determining the
QNMs using an internal cavity and its roundtrip matrix.

A. Bloch Mode Expansions and Scattering Matrices
In the modal expansion techniques, the structure under con-
sideration is divided into layers, which are uniform along a
chosen propagation direction, taken here as the z axis. In each
layer, so-called lateral eigenmodes are determined as solu-
tions to the z invariant wave equation [35]. A generic sketch
of the structure consisting of Q layers is shown in the left
panel of Fig. 2, where hatching patterns indicate lateral per-
mittivity profiles; layers q − 1 and q� 1 (q and q� 2) are iden-
tical. The mode profiles of the lateral eigenmodes can in
certain symmetric cases be expressed analytically [42], and
otherwise finite-difference or Fourier series [43,44] tech-
niques are used. The lateral eigenmodes are used as a basis
for expansion of the electric and magnetic fields, and by sat-
isfying the electromagnetic BCs at interfaces, scattering ma-
trices of the entire multilayer structure are determined using
an iterative procedure [45].

Structures exhibiting a periodicity in the propagation direc-
tion z may be analyzed more intuitively and efficiently by

imposing Bloch’s theorem [46]. Instead of constructing the
scattering matrix for the entire structure, the scattering matrix
of a single supercell is considered, and the characteristic
modes of each supercell are the Bloch modes. In Fig. 2, layers
q − 1 through q� 2 (left panel) constitute the wth periodic
section (right panel), with layers q − 1 and q being the super-
cell. The grouping of layers gives rise to a conceptually new
structure consisting of W periodic sections, as shown in the
right panel of Fig. 2. In the sectioned structure, the fields in
each section w, Ew�r� and Hw�r�, are expanded on Bloch
modes, ewj �r⊥; z� and hwj �r⊥; z�,

Ew�r� �
X
j

cwj e
w
j �r⊥; z�; (5a)

Hw�r� �
X
j

cwj h
w
j �r⊥; z�; (5b)

which, owing to Bloch’s theorem, are quasi-periodic functions
of the z coordinate,

ewj �r⊥; z� aw� � ρwj e
w
j �r⊥; z�; (6a)

hwj �r⊥; z� aw� � ρwj h
w
j �r⊥; z�; (6b)

ρwj ≡ exp�ikwj aw�; (6c)

where kwj and aw are the wavenumber of the jth Bloch mode
and the length of the supercell, respectively. We refer to ρwj as
the Bloch mode eigenvalue, and this is the central quantity
that must be determined; when it is known, Eqs. (6) provide
an analytic description of the propagation of each Bloch mode
in the z direction without the need to impose artificial BCs like
PMLs. This represents a major advantage and is an important
element in satisfying the outgoing wave BC of the QNMs with
the present approach. In Appendix A, we detail the technique
for calculating the Bloch modes and discuss their classifica-
tion as either decaying, propagating or growing in the upward
(�z) or downward (−z) direction. Bloch mode reflection and
transmission matrices at section interfaces are derived by re-
quiring continuity of the tangential components of the fields,
and, subsequently, Bloch mode scattering matrices are de-
rived iteratively. This allows for the construction of fields ex-
panded on Bloch modes in all sections for an arbitrary
excitation. Importantly, we may write Eq. (4) in terms of the
Bloch mode amplitudes introduced in Eqs. (5) to relate the
amplitudes of the incoming cin and outgoing cout Bloch modes
in the outermost regions (solid and dashed arrows, respec-
tively, in the right panel of Fig. 2) through the total scattering
matrix S:

cout � Scin: (7)

This relation forms the basis of the scattering matrix method
for determining QNMs. We stress that for the determination of
QNMs as presented in Section 2.C, the use of scattering ma-
trices is crucial, while the use of Bloch mode expansions is
simply our specific choice. Alternatives include Green’s func-
tion based expansions [47] in connection with scattering ma-
trices and Bloch modes [48].

Fig. 2. Generic structure as analyzed using modal expansions. Left
panel: layered structure consisting of Q z invariant layers. Hatching
patterns indicate lateral permittivity profiles, and layers q − 1 and
q� 1 (q and q� 2) are thus identical. Right panel: layered structure
consisting of W periodic sections that each comprises a number of
layers. Layers q − 1 through q� 2 (left panel) constitute the wth peri-
odic section (right panel) with two repetitions of the supercell. The
amplitudes of the incoming Bloch modes in sections 1 and W (solid
arrows) are related to the amplitudes of the outgoing Bloch modes
(dashed arrows) via the total scattering matrix S.
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B. Definition of Quasi-Normal Modes
We define QNMs as time-harmonic solutions E�r; t� �
E�r; ~ω� exp�−i ~ωt� with the frequency component E�r; ~ω� satis-
fying the wave equation

∇ × ∇ × E�r; ~ω� − k20ϵ�r; ~ω�E�r; ~ω� � 0; (8)

and an outgoing wave BC (or radiation condition) [30], to be
specified below. In Eq. (8), k0 � ~ω∕c and ϵ�r; ~ω� are the free-
space wavenumber and the relative permittivity, respectively.
For structuresof finite extent andembedded in ahomogeneous
environment of refractive index nB, the outgoing wave BC is
the so-called Silver–Müller radiation condition [49]:

r̂ × ∇ × E�r; ~ω� � inBk0E�r; ~ω� → 0 for nBk0jrj → ∞: (9)

This choice of BC, asmentioned in Section 1, renders the differ-
ential equation problem non-Hermitian and thus, in general,
leads to solutions with complex frequencies. In the context
of themodal expansions of Eqs. (5), we formulate the outgoing
wave BC of the QNMs as a finite output at vanishing input:

cout ≠ 0 for cin � 0: (10)

If the outermost sections 1 and W (see the right panel in
Fig. 2) are homogeneous, the condition in Eq. (10) is equiva-
lent to the radiation condition in Eq. (9). If these sections are
not homogeneous, the Silver–Müller radiation condition in
Eq. (9) cannot be applied, while the condition in Eq. (10) re-
mains a viable condition, and we use this to determine QNMs
in PhC cavities coupled to infinitely extended waveguides in
Section 3.

C. Calculating Quasi-Normal Modes Using Scattering
Matrices
In this section, we first review the method based on the total
scattering matrix in Section 2.C.1. We then present the new
method based on an internal cavity and its roundtrip matrix
in Section 2.C.2. We term these the total scattering matrix
method and the cavity roundtrip matrix method, respectively.

1. Total Scattering Matrix Method
The total scattering matrix method relies on solving Eq. (7)
explicitly with the condition in Eq. (10), which becomes

S−1� ~ω�cout � 0: (11)

QNMs are the nontrivial solutions of this equation, leading to
the following condition for the QNM frequency:

det�S−1� ~ω�� � 0: (12)

This equation, in general, is satisfied at complex-valued ~ω, and
the associated nontrivial cout yields the expansion coefficients
of the QNM on the Bloch modes in the outermost sections.
This, in principle, provides a straightforward method for de-
termining QNMs. In our experience, however, the solution of
Eqs. (11) and (12) is complicated; for complex structures that
require the inclusion of a large number of Bloch modes, the
scattering matrix is comparatively large and the construction
of its inverse matrix becomes numerically inaccurate and un-
stable. This can be understood as follows: near the QNM com-
plex frequency, some elements in the scattering matrix S

become very large to ensure a finite output at vanishing input.
At the same time other elements in the scattering matrix re-
main small, and it therefore contains elements spanning many
orders of magnitude, rendering the numerical construction of
the inverse scattering matrix infeasible. To address this issue,
it has been proposed to employ the singular nature of the scat-
tering matrix close to a QNM frequency by expanding the sin-
gular part of the matrix in simple poles around the complex
mode frequency, and we refer the reader to [20,37–39] for de-
tails on this procedure. In certain simple cases, the contribu-
tions to the QNM are dominated by a single Bloch mode, and it
is possible to locate the QNM spectrally by looking for a pole
of the scattering coefficient of this single Bloch mode, similar
to what has been done for grating structures [36].

2. Cavity Roundtrip Matrix Method
To introduce the cavity roundtrip matrix method, we consider
the sectioned structure, as introduced in the right panel of
Fig. 2, and select an internal sectionw, 2 ≤ w ≤ W − 1, that we
refer to as the cavity section; see the left panel of Fig. 3. An
example of a cavity is section 2 in Fig. 4(a), and in Section 3.B
we discuss the choice of cavity section further.

In the cavity section, we search for the QNMs as super-
positions of Bloch modes cc that replicate themselves upon
a roundtrip:

Mcc � αccc; αc � 1; (13)

where αc is an eigenvalue of the cavity roundtripmatrixM [41].
M is obtained by multiplying the reflection and propagation
matrices in the order indicated by the arrows in the right panel
of Fig. 3:

M� ~ω� ≡ RbotP−RtopP�; (14)

where Rtop (Rbot) is the scattering reflection matrix for the top
(bottom) part of the structure, while P� (P−) is the diagonal
matrix accounting for the propagationof theBlochmodes from
the bottom (top) to the top (bottom) of the cavity section. In
passive structures, the roundtrip eigenvalues αc always have
magnitudes smaller than unity at real frequencies; part of

Fig. 3. Outline of the cavity roundtrip matrix method for determining
QNMs. Left panel: in the sectioned structure introduced in Fig. 2, an
internal section w is chosen as the cavity. In the outermost regions,
the amplitudes of the incoming (solid arrows) and outgoing (dashed
arrows) Bloch modes vanish and have finite values, respectively. The
outgoing modes grow and diverge as they propagate away from the
structure. Right panel: zoom in on the cavity section with indication of
the elements of the roundtrip matrix comprising the top and bottom
scattering reflection matrices, Rtop and Rbot, and upward and down-
ward propagation matrices P� and P−.
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the light leaks out of the cavity with reflectivities being smaller
than unity. It is illustrative to compare to the case of lasers,
where this loss is compensated by adding gain material, which
gives elements with magnitudes larger than unity in the propa-
gation matrices, and lasing starts when αc � 1. In both passive
and active structures, Eq. (13) has solutions at complex
frequencies, due to the radiation condition, and we solve it
by iterating the frequency in the complex plane to find a cavity
roundtrip eigenvalue equal to unity; the associated eigenvector
cc gives the QNM field distribution inside the cavity. Impor-
tantly, as indicated in the left panel of Fig. 3, there are only out-
going waves in the outermost sections. This procedure
therefore relies on construction of the cavity roundtrip matrix
and determination of its eigenvalues, which is computationally
more stable than inversion of the total scattering matrix. In
Appendix B, we demonstrate that the two methods lead to
the same equation for the complex QNM frequencies in a case
where the scattering and roundtrip matrices can be expressed
in closed form.

3. QUASI-NORMAL MODES IN PHOTONIC
CRYSTAL CAVITIES
To demonstrate the roundtrip matrix method proposed in
Section 2.C.2, we apply it to determine QNMs in two types of
PhC cavities. For simplicity, we study 2D structures with uni-
formity along the y direction, in which case we may describe
the electromagnetic fields completely by either the y compo-
nent of the electric Ey (TE) or the magnetic fieldHy (TM). The
lateral eigenmodes are determined using the FMM [43,44], and
Bloch modes in periodic sections are determined as detailed
in Appendix A. Note our convention of TE and TM, which is
consistent with the FMM literature, but opposite of the con-
vention used in the literature on PhCs [50].

We consider a 2D rectangular PhC lattice (lattice constant
a; see Fig. 4) consisting of high-index rods (radius r, permit-
tivity ϵRods) in air (permittivity ϵBack), with parameters as
specified in Table 1. This structure is known to possess a TE
bandgap [50], and a W1 waveguide is formed by removing a
row of rods; this waveguide supports a propagating Bloch
mode for guiding light through the structure. In Sections 3.A
and 3.B, we further introduce PhC cavities that are coupled to
the W1 waveguide. The particular structures considered in
Section 3.A are similar to those in [17].

In each layer (left panel in Fig. 2), we include a total of
NFourier terms in the Fourier series for determining the lateral
eigenmodes. By using the Bloch mode condition in the z di-
rection [see Eqs. (6)], we model a rectangular PhC lattice with
a W1 waveguide extending infinitely along the z direction
without the need to employ absorbing BCs; along the x direc-
tion we use periodic BCs. To meet the requirements of z
invariant layers (left panel in Fig. 2), we approximate the rods
of the PhC with a staircase consisting of NStaircase layers per
rod; we use values of NFourier and NStaircase as given in Table 1
and have verified that the results given in the following sec-
tions are not affected when increasing the values of these
parameters.

A. Cavity Side-Coupled to W1 Waveguide
Removing a rod in the bulk of the PhC and in the vicinity of the
W1 waveguide forms a side-coupled cavity, as illustrated in
Fig. 4; in the following, we focus on determining QNMs of this

structure. In Fig. 4(a), dashed lines separate the periodic sec-
tions, each described by an underlying supercell (see Fig. 2),
for which distinct sets of Bloch modes [see Eqs. (6)] are de-
termined. Section 2 is the cavity section, for which a unity
eigenvalue of the roundtrip matrix is determined.

By calculating the power reflection R of the propagating
Bloch mode in the W1 waveguide, indicated in the inset in
Fig. 1, as function of a real frequency, we observe a peak,
which we attribute to the excitation of a QNM. We use the
value of the frequency at the reflection maximum as a starting
point for the iteration toward a complex frequency giving a
unity eigenvalue of the roundtrip matrix; see Eq. (14). Specifi-
cally, we compute all eigenvalues of the roundtrip matrix
M� ~ω� and choose the eigenvalue that deviates the least from
1. We use this eigenvalue and a Newton–Raphson algorithm to
iterate the complex frequency ~ω until the eigenvalue of M� ~ω�
closest to unity deviates by less than a chosen tolerance, taken
here as ∼10−12. For four different values of the cavity-W1
distance dcav we determine QNMs, and the field distributions
(jEyj) of two of these are shown in Fig. 4; their complex
frequencies and Q factors are given in Table 2.

The real part of the QNM frequency Re� ~ω� remains essen-
tially constant as dcav is increased. In contrast, the absolute
value of the imaginary part of the QNM frequency Im� ~ω�

Fig. 4. QNM field distribution (jEyj) in a cavity side-coupled to a W1
waveguide in a 2D rectangular PhC lattice with lattice constant a.
Dashed lines in panel (a) separate periodic sections with distinct sets
of Blochmodes, and section 2 is the cavity section for constructing the
roundtrip matrix; see Fig. 3. The center-to-center distances between
the cavities and the W1 waveguide are dcav � 2a and dcav � 3a in pan-
els (a) and (b), respectively, and the associated QNM frequencies and
Q factors are given in Table 2.

Table 1. PhC and Simulation Parameters

r∕a ϵRods ϵBack NFourier NStaircase

0.2 8.9 1 101 128
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decreases by more than an order of magnitude when dcav is
increased by a lattice constant, giving rise to Q factors that
increase similarly as the cavity is moved away from the wave-
guide. This increase of the Q factor reflects a smaller rate of
leakage from the cavity into the waveguide as dcav becomes
larger. The 2D calculations presented here lack the out-of-
plane (y) contribution to the corresponding 3D Q factor, but
the approach for determining QNMs and their Q factors is
readily extendable to 3D.

The type of structure considered in this section is domi-
nated by a single QNM, and we may reconstruct the reflection
spectrum in Fig. 1 as a Lorentzian parametrized by the
QNM-frequency:

R�ω� � �Im� ~ω��2
�ω − Re� ~ω��2 � �Im� ~ω��2 ; (15)

which is shown as the blue solid curve in Fig. 1. For frequen-
cies within a linewidth of the peak (R > 0.5), the deviation be-
tween the scattering calculation and the QNM-approximated
spectrum [Eq. (15)] is less than 1%, whereas the error in-
creases further away from the cavity resonance frequency.
Since the complex QNM frequencies can typically be obtained
with fewer computations than the full scattering spectrum,
QNMs thus constitute a simple and practical way of obtaining
the spectrum and the Q factor of the resonator.

In Fig. 5, we plot the normalized QNM field distribution in
the middle of the waveguide (x � 0) as a function of
znorm ≡ �z − zcav�∕a, where zcav is the cavity z coordinate. The
figure shows the near-field behavior, corresponding to the z
coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot. In the near-
field, the modes exhibit a maximum at znorm � 0 for all values
of dcav, and the periodic modulation due to the Bloch mode
form in Eqs. (6) is clearly visible. In the far-field, the periodic
modulation of the QNMs is preserved due to the infinitely ex-
tended PhCwaveguide, but more interestingly the exponential
divergence of the envelope of the QNMs is obvious, in particu-
lar for the QNM with dcav � 2a (green solid curve). The
envelope of the QNM with dcav � 3a (blue dashed curve) in-
creases slightly, while for the largest-Q QNMs (dcav � 4a, red
dotted curve, and dcav � 5a, black solid-star curve), the diver-
gence is not visible at these distances. Importantly, the mag-
nitude of neither of the fields tends to zero in the far-field.

B. Cavity In-Line-Coupled to W1 Waveguide
As a second example, we consider again the 2D rectangular
PhC lattice with a W1 waveguide. We remove the side-coupled
cavity considered in the previous section and instead imple-
ment an in-line cavity. This is done by surrounding a single
row of the W1 waveguide by mirrors constituted of blocking
elements, as shown in Fig. 6. Sections 1 and 9 are the wave-

guide sections in which the QNM is outgoing and diverging,
and sections 2, 3, and 4 (6, 7, and 8) constitute the bottom
(top) mirror surrounding the central cavity section 5. Addition-
ally, we vary the refractive indices of the blocking elements in
the waveguide in sections 2, 3, 4, 6, 7, and 8 linearly as

nw � nBack � Δw�nRods − nBack�; (16a)

Δ2�Δ8�0.9; Δ3�Δ7�0.6; Δ4�Δ6�0.3; (16b)

with nRods � �����������
ϵRods

p
and nBack � �����������

ϵBack
p

.

Table 2. QNM Frequencies and Q Factors for

Side-Coupled PhC Cavities

Fig. 4 dcav [a] Re� ~ω� [2πc∕a] Im� ~ω� [2πc∕a] Q

(a) 2 0.397 −0.0014 1.5 · 102

(b) 3 0.395 −0.00012 1.7 · 103

– 4 0.395 −0.0000097 2.0 · 104

– 5 0.395 −0.00000077 2.5 · 105

Fig. 5. Normalized QNM field distribution in a cavity side-coupled to
a W1 waveguide in a 2D rectangular PhC lattice in the middle of the
W1 waveguide (x � 0) as function of znorm ≡ �z − zcav�∕a. Different
curves correspond to different cavity—W1 distances dcav [see
Fig. 4(a)]. The figure shows the QNMs in the near-field, corresponding
to the z coordinates used in Fig. 4, while the inset includes the far-field
behavior of the QNMs in a semilogarithmic plot.

Fig. 6. QNM field distribution (jEyj) in a cavity in-line-coupled to a
W1 waveguide in a 2D rectangular PhC lattice. The cavity is formed by
surrounding one row (section 5) by blocking elements in the wave-
guide, constituted by sections 2, 3, and 4 (bottommirror) and sections
6, 7, and 8 (top mirror). The refractive index of the blocking elements
is varied linearly as specified in Eqs. (16). The QNM is independent of
the choice of cavity section; see Table 3.

Table 3. Relative Deviations of QNM

Frequencies and Near-Field Distributions

for In-Line-Coupled PhC Cavity

Cavity w j ~ω5 − ~ωwj∕j ~ω5j
R jE5

y − Ew
y jdr∕

R jE5
yjdr

5 0 0
4 7.8 · 10−14 1.6 · 10−10

3 3.8 · 10−14 1.3 · 10−10

2 2.4 · 10−14 3.6 · 10−10
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A QNM, with complex frequency ~ωa∕2πc � 0.375 − 0.0012i,
may be readily calculated using section 5 as the cavity sec-
tion. However, as is apparent from the field distribution
shown in Fig. 6, the mode leaks into the surrounding mir-
rors, and we may use other sections as the cavity in the
roundtrip matrix method for determining the QNM. We
use sections 2, 3, and 4 as the cavity and determine the
QNM of the structure in Fig. 6. In Table 3, we give the cor-
responding relative deviations of the QNM frequencies
and the near-field distributions with respect to the values
obtained when using section 5 as the cavity. Both quantities
are orders of magnitude smaller than unity, illustrating that
different choices of the cavity section lead to the same
QNM. This demonstrates the insensitivity to the choice of
cavity in the roundtrip matrix method, which is an impor-
tant property for structures that do not contain a well-
defined cavity, e.g. the adiabatic micropillar cavity structure
of [7].

4. CONCLUSION
Quasi-normal modes are solutions of the source-free
Maxwell equations that satisfy an outgoing wave boundary
condition (or radiation condition) and provide a natural
framework for modeling of most resonant nanophotonic
structures. The modes are characterized by complex
frequencies, with the imaginary part accounting for their
leaky nature, a property which translates into a spatial di-
vergence when considering the propagating nature of the
modes. We have presented a method for calculating
quasi-normal modes of open nanophotonic structures using
an internal cavity section and the associated cavity round-
trip matrix. The method is based on the use of scattering
matrices, and we have developed the details of the method
using Bloch mode expansions of the electromagnetic fields
and the associated Bloch mode scattering matrices. We em-
phasize that other representations of the fields can be em-
ployed (for example, Green’s function expansions [47]), and
that the importance lies in the access to scattering matrices
in the chosen representation. As compared to previously de-
veloped methods relying on an inversion of the total scatter-
ing matrix, the method that we have presented here is more
intuitive, being analogous to the well-known lasing condi-
tion, and easier to implement numerically.

We have demonstrated the use of the method by deter-
mining quasi-normal modes in two types of two-dimensional
photonic crystal cavities coupled to infinitely extended
waveguides. The use of Bloch mode expansions allows
the modeling of infinitely extended structures without im-
posing absorbing boundary conditions such as perfectly
matched layers. To the best of our knowledge, explicit cal-
culation of quasi-normal modes in such infinitely periodic
structures has not been demonstrated before. For the sec-
ond example of quasi-normal modes in photonic crystal
cavities, we also demonstrated the robustness of the method
with respect to the choice of the internal cavity section.
This is particularly important when employing the method
for structures that do not feature a well-defined cavity,
as, for example, the adiabatic micropillar cavity structure
of [7].

As an outlook, the quasi-normal modes of infinitely ex-
tended photonic crystals may provide a rigorous basis

for describing light propagation in these structures, which
may be of importance for understanding optical switching
[11,14–17]. Also, by including a finite imaginary part of the
permittivity, structures with material gain (or loss) can be
analyzed. It was recently shown [51] that such structures
display a strong coupling between gain and dispersion,
which the method described here is ideally suited for ana-
lyzing further. We recall the theories based on quasi-normal
modes for modeling of dipole sources [23–25], for modeling
of one-dimensional photonic crystals [27,28], and for mod-
eling of the scattering properties of structures of finite
extent [26], and envision that similar theories could be de-
veloped for coupled waveguide–cavity photonic crystal
structures [52,53]; this and normalization of QNMs in these
structures is work in progress, which will appear in future
publications [54]. Such theories are particularly interesting
for three-dimensional systems, for which full-scale optical
simulations are known to be computationally demanding
and time consuming.

APPENDIX A: DETERMINATION AND
CLASSIFICATION OF BLOCH MODES
To determine Bloch modes in the periodic sections, defined in
Fig. 2, we expand each Bloch mode on the lateral eigenmodes
of the first layer in the supercell (left panel of Fig. 2) and con-
vert the Bloch mode condition to a generalized eigenvalue
problem for the expansion coefficients and the Bloch mode
eigenvalues ρwj [55]. This produces the set of Bloch modes
Ω � fewj ;hwj ; ρwj gj that we partition into waves in the upward

(�z) Ω� � few�
j ;hw�

j ; ρw�
j g

j
and in the downward (−z) Ω− �

few−

j ; hw−

j ; ρw−

j g
j
directions. The sets Ω� and Ω− contain the

same number of modes, and for mirror symmetric supercells
the modes in the two sets come in pairs, whose Bloch eigen-
values satisfy ρw�

j � 1∕ρw−

j [48]. In general the Bloch modes
can be either decaying, propagating, or growing along the z
direction, and from Eq. (6c) we note that propagating Bloch
modes have purely real wavenumbers kwj , while decaying and
growing modes have complex or imaginary wavenumbers. We
provide an overview of the different types of Bloch modes in
Table 4.

We do not a priori know which Bloch modes belong to
which of the two sets Ω� and Ω−, but need to impose physical
requirements to make this partitioning. To this end, we intro-
duce the laterally integrated z component of the Poynting
vector of a Bloch mode, giving the net power Pw

j in the propa-
gation direction:

Pw
j ≡

1
2

Z
Re�ewj × �hwj ��� · ẑ dr⊥. (A1)

With Pw
j > 0 (Pw

j < 0) the net power flow of the mode is in the
�z (−z) direction. We refer to the set of decaying and the set

Table 4. Overview of Bloch Mode Eigenvalues

Mode Type Upward (�z) Downward (−z)

Decaying jρw�
j j < 1 jρw−

j j > 1
Propagating jρw�

j j � 1 jρw−

j j � 1
Growing jρw�

j j > 1 jρw−

j j < 1
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of propagating or growing Bloch modes as ΩD � Ω�
D � Ω−

D
and ΩPG � Ω�

PG � Ω−

PG, respectively. To partition the Bloch
modes automatically in different situations, we have devel-
oped the following classification algorithm, which is a gener-
alization of that proposed in [48]:

Algorithm 1

1. Classify decaying modes (ΩD):
(a) Upward (�z), Ω�

D : jρwj j < 1 ∧ j1∕jρwj j − 1j > δ,
(b) Downward (−z), Ω−

D: jρwj j > 1 ∧ jjρwj j − 1j > δ.

2. Classify propagating and growing modes (ΩPG):
(a) Upward (�z), Ω�

PG: ΩnΩD ∧ Pw
j > 0,

(b) Downward (−z), Ω−

PG: ΩnΩD ∧ Pw
j < 0.

In the simplest case of a passive structure, at a real fre-
quency and without PMLs, the propagating Bloch modes
would ideally have jρwj j � 1, but due to numerical rounding
errors these deviate slightly from unity. To account for this
we introduce the empirical parameter δ, with 0 < δ ≪ 1 and
δ typically on the order of 10−3 or smaller.

When we change the simple structure, for instance, by
introducing PMLs, by adding loss or gain, or by adding an
imaginary part to the frequency, we perturb the set of Bloch
modes, and in particular jρwj j of the propagating Bloch modes
start to deviate from unity by more than numerical rounding
errors. Thus, we increase δ to include these quasi-propagating
Bloch modes in the power sorting; see point 2 in Algorithm 1.
Since the difference in jρwj j between propagating and decaying
Bloch modes in the simple situation may be very small, in-
creasing δ in the perturbed situations might result in inclusion
of decaying Bloch modes in the wrong set [56]. In the PhCs
analyzed in Section 3, the difference in jρwj j between propagat-
ing and decaying Bloch modes is sufficiently large that the
classification of Bloch modes is unambiguous. In other struc-
tures, the difference in jρwj j between propagating and decaying
Bloch modes may be a lot smaller, and in such cases it is nec-
essary to determine the QNMs with different values of δ to
ensure that the Bloch mode sorting does not influence the
QNM complex frequency and field distribution. Also, the
lower is the Q factor of the QNM to be determined, the higher
is the value of δ needed to ensure convergence of the iterative
routine to find the complex QNM frequency.

APPENDIX B: EQUIVALENCE OF TOTAL
SCATTERING MATRIX AND CAVITY
ROUNDTRIP MATRIX METHODS IN
ONE-DIMENSIONAL THREE-SECTION
STRUCTURE
In the general case, we cannot show analytically that the
total scattering matrix method (Section 2.C.1) and the cavity
roundtrip matrix method (Section 2.C.2) lead to the same
complex QNM frequencies since we cannot write simple,
closed-form expressions for the involved matrices. However,
for certain simple structures we can write compact expres-
sions for these matrices, and in this appendix we explore
one such case and show that the two methods lead to the
same equation for the complex QNM frequency.

We consider a structure consisting of three laterally uni-
form and z invariant sections in which the Bloch modes
are the lateral eigenmodes that in turn are plane waves. We
assume normal incidence, which makes it a 1D problem. At
the interfaces, the reflection and transmission of each of the

plane waves are determined by the Fresnel coefficients [57],
and in using section 2 as the cavity section (see Fig. 3), the
requirement of a unity eigenvalue of the roundtrip matrix, in-
troduced in Eq. (14), becomes

M� ~ω� � R2;1P2R2;3P2 � 1: (B1)

Here, P2 � exp�in2k0h2� where n2 and h2 are the refractive
index and the height of section 2, respectively. R2;1 and R2;3

are Fresnel reflection coefficients.
The elements of the total scattering matrix that relate the

outgoing to the incoming amplitudes in sections 1 and 3,

�
c1;−

c3;�

�
�

�
S1;1 S1;2

S2;1 S2;2

��
c1;�

c3;−

�
; (B2a)

read as follows [35]:

S1;1 � R1;2 � T2;1P2R2;3P2�1 − R2;1P2R2;3P2�−1T1;2; (B2b)

S1;2 � T2;1P2T3;2 � T2;1P2R2;3P2

× �1 − R2;1P2R2;3P2�−1R2;1P2T3;2; (B2c)

S2;1 � T2;3P2�1 − R2;1P2R2;3P2�−1T1;2; (B2d)

S2;2 � R3;2 � T2;3P2�1 − R2;1P2R2;3P2�−1R2;1P2T3;2: (B2e)

All R and T coefficients are Fresnel reflection or transmission
coefficients. Provided the inverse scattering matrix exists, its
determinant can be expressed as the inverse of the determi-
nant of the scattering matrix:

det�S−1� ~ω�� � 1
det�S� ~ω�� �

��1 − R2;1P2R2;3P2��2
�…� ; (B3)

where, in view of Eq. (12), the detailed expression for the de-
nominator is left out; importantly, it does not vanish when
R2;1P2R2;3P2 → 0. Finally, by using Eq. (12), the total scatter-
ing matrix method equation for the complex QNM frequency
reads

R2;1P2R2;3P2 � 1; (B4)

which is the same equation as obtained from the roundtrip
matrix method in Eq. (B.1). We have thus, in the simple case
of three uniform sections, demonstrated that the two methods
lead to the same equation for the complex QNM frequencies.
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