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We show how one can use a nonlocal boundary condition, which is compatible with standard frequency domain
methods, for numerical calculation of quasinormal modes in optical cavities coupled to waveguides. In addition, we
extend the definition of the quasinormal mode norm by use of the theory of divergent series to provide a framework
for modeling of optical phenomena in such coupled cavity-waveguide systems. As example applications, we cal-
culate the Purcell factor and study perturbative changes in the complex resonance frequency of a photonic crystal
cavity coupled to a defect waveguide. © 2014 Optical Society of America
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Quasinormal modes (QNMs) [1–3] provide a natural
framework for modeling light propagation and light-
matter interaction in resonant electromagnetic material
systems, such as optical cavities [4–10] and plasmonic
nanoparticles [11–15]. The QNMs of localized electro-
magnetic resonators in an otherwise homogeneous
medium may be calculated as eigenmodes of the
source-free Maxwell equations augmented with the
Silver-Müller radiation condition [3]. The radiation condi-
tion admits only fields that propagate away from the
resonator at large distances. This, in turn, leads to a dis-
crete spectrum of complex resonance frequencies ~ωμ �
ωμ − iγμ from which the Q value may be calculated di-
rectly as Q � ωμ∕2γμ [16]. In numerical calculations,
the radiation condition is often modeled using perfectly
matched layers (PMLs) [17] in either frequency- or time-
domain calculations, but alternatives are also available;
for example, in the form of integral equations [8,12].
In many technologically relevant applications, light

coupling to and from the cavity is controlled by wave-
guides, such as fibers or line defects in photonic crystal
(PC) [18] circuits. In such coupled cavity-waveguide sys-
tems, the coupling to the waveguides represents by far
the largest decay channel for light in the cavity; indeed,
any decay through other channels than the waveguide
often represents unwanted and detrimental losses and
is typically minimized through careful engineering.
Calculation of QNMs in these coupled systems is nontri-
vial because of the need for a suitable radiation condi-
tion. In particular, the Silver-Müller radiation condition
applies only to problems with a homogeneous back-
ground material, and if the waveguides have discrete
translational symmetry—as in PCs, for example—one
cannot use PMLs to avoid reflections from the calcula-
tion domain boundary. Instead, one can formulate a suit-
able radiation condition by appealing to the known Bloch
form of the solutions in the periodic waveguide, as was
done in [7] using a Dirichlet to Neumann map technique
[19] and in [10] using the Fourier modal method (FMM)

[20,21]. In this Letter, we present an alternative formu-
lation of the radiation condition in terms of a nonlocal
boundary condition, which can be used with standard
frequency domain methods to calculate QNMs in coupled
cavity-waveguide systems. Figure 1 shows the QNM of a
side-coupled cavity in a PC with lattice constant a made
from high-index (ϵcyl � 8.9) cylinders of radius r � 0.2a
in air. This QNM—which is identical to the QNM that was
calculated with the FMM in [10]—was calculated using
the finite element method (FEM) with the nonlocal
boundary condition that we present below.

The leaky nature of the QNMs leads to an exponential
divergence at large distances, which means that they

Fig. 1. Top: absolute value of the QNM j~fc�r�j in a cavity side-
coupled to an infinite waveguide in a PC with lattice constant a.
The QNM has a complex resonance frequency of ~ωca∕2πc �
0.39687 − 0.00136i corresponding to Q � 146. Bottom: real part
(red full), imaginary part (blue dashed), and absolute value
(black dashed–dotted) of the QNM along the line y � 0 in
the center of the waveguide. In both panels, the QNM is scaled
to unity at r � rc in the center of the cavity.
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cannot be normalized in the same way as the so-called
normal modes calculated using Dirichlet (or periodic)
boundary conditions. Instead, the QNMs may be normal-
ized by an alternative prescription that explicitly com-
pensates for the divergence. Such a normalization was
first derived for spherically symmetric material systems
in [4–6], and was adopted for general leaky optical
cavities in [8] to define a generalized effective mode vol-
ume with applications, for example, in Purcell factor [22]
calculations. Sauvan et al. [11] later derived an alterna-
tive formulation of the norm in an elegant and transpar-
ent way. When the Silver-Müller radiation condition
applies, the two formulations can be shown to be iden-
tical [14]. Whereas the norm in [4–6] relies explicitly on
the Silver-Müller condition, the formulation in [11] does
not, but it does rely on the use of PMLs to regularize the
normalization integral by a complex coordinate trans-
form. For QNMs leaking through PC waveguides, there-
fore, one cannot directly use either formulation. As a
remedy, we show in this Letter how one can use the
theory of divergent series [23] to regularize the integral,
and we use the normalization in examples of Purcell
factor calculations and perturbation theory for the PC
cavity-waveguide system in Fig. 1.
We consider systems of cavities coupled to wave-

guides that are defined in general by a periodic relative
permittivity distribution ϵr�r� for which ϵr�r� R� � ϵr�r�,
where R is a lattice vector in the direction of the wave-
guide. In addition, we limit the analysis to nonmagnetic,
isotropic, and dispersionless materials, and to cavities
coupled to waveguides with a single band of defect wave-
guide modes in the frequency range of interest. We focus
on electric field QNMs defined as solutions to the wave
equation

∇ × ∇ × ~fμ�r� −
�
~ωμ

c

�
2
ϵr�r�~fμ�r� � 0; (1)

where c is the speed of light, subject to a suitable radi-
ation condition describing the light-propagation through
the waveguide away from the cavity. In the periodic
waveguides, Bloch–Floquet theory [18] ensures that
the solutions to the wave equation may be written as

fk�r� � eik·ruk�r�; (2)

in which k is the wave vector and uk�r� R� � uk�r�. At
sufficient distances from the cavity, the leaky cavity
mode may be written in the form of a single Bloch mode
as in Eq. (2) but with a complex wave vector ~kμ corre-
sponding to the resonance frequency ~ωμ and pointing
in the direction of the waveguide away from the cavity.
We assume the calculation domain boundary ∂V to be a
plane perpendicular to the waveguide direction (a line in
two dimensions) with outward pointing unit vector n. In
this case, Eq. (2) can be used to define the waveguide
radiation condition as a nonlocal boundary condition
of the form

~f ~k�r�
��
r∈∂V � ei ~k·na~f ~k�r − na�: (3)

This nonlocal boundary condition is similar to the one
introduced in [24], but the application is different in that
there is no incoming field; the QNMs are defined as the

solutions to the wave equation with no sources. Using
Eq. (3), one can calculate the QNMs of coupled cavity-
waveguide systems to high precision using standard fre-
quency domain methods. In practice, the implementation
includes a few subtleties and associated sources of error
that we discuss below.

For most problems of practical interest, the dispersion
of the waveguide modes has no closed form expression,
and this complicates the use of Eq. (3) in QNM calcula-
tions for which the complex resonance frequency is the
eigenvalue of interest. In practice, therefore, we calculate
the complex wave vector ~kμ using a Taylor expansion
approximation of the dispersion along the real frequency
axis, which may then be readily extended to the complex
frequency plane by analytic continuation. As with other
frequency domain calculations of QNMs, the radiation
condition results in a nonlinear problem because it de-
pends on the complex resonance frequency. Therefore,
one must calculate the QNMs by an iterative procedure
in which a fixed frequency ~ωguess is used to set up the
equation system that is then subsequently solved to find
the frequency closest to ~ωguess. The iteration continues
until the difference δ ~ω is less than some prescribed
tolerance δ ~ωmax. Finally, an important source of error
in the calculations is linked to the size of the calculation
domain and can be easily described in the language of the
FMM. The FMM approach is based on an expansion using
the full set of Bloch modes in the system—with
either propagating, growing, or decaying characteristics.
In the waveguides, the field is described by several
decaying Bloch modes as well as a single growing Bloch
mode [10], and Eq. (3) thus requires all purely decaying
Bloch mode components of the QNM to be negligibly
small at the calculation domain boundary. In practice,
this leads to larger calculation domains, which is the
price to pay for the relatively simple boundary condition
in Eq. (3) when comparing to [7] and [10].

The procedure outlined above was applied to calculate
the QNM in Fig. 1, which we denote by μ � c and which
has only an out-of-plane component, ~fc�r� � ~fc�r�ez. The
QNM has a complex resonance frequency of ~ωca∕2πc �
0.39687 − 0.00136i, corresponding to Q � 146. From
analytic continuation of the dispersion we find that the
complex wave vector in the direction of the waveguide
is ~kca∕2π � 0.2837 − 0.0026i. The calculations were per-
formed using FEM (Comsol Multiphysics 4.3a), and an
absolute tolerance of δ ~ωmaxa∕c � 10−5. As for discretiza-
tion, the number of elements was kept sufficiently high
so as not to influence the results to the quoted number of
digits. The analytic continuation of the dispersion curve
into the complex frequency plane was based on a fourth-
order polynomial fit to the real dispersion data around
the point ωRa∕2πc � 0.395. Comparing to the corre-
sponding fifth-order expansion reveals a difference
δka∕2π < 10−6 over an interval jω − ωRja∕2πc < 0.01.
This interval is more than an order of magnitude larger
than the imaginary part of the calculated resonance fre-
quency, wherefore we expect the error in the complex
dispersion to be negligible. Figure 2 illustrates the con-
vergence of the QNM resonance frequency as the calcu-
lation domain size Lx is increased. Specifically, it shows
the error δ ~ωL � j ~ω�Lx� − ~ω�Lmax�j when comparing
to a fixed domain size Lmax � 18a as well as the error
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δ ~ωL � j ~ω�Lx� − ~ω�Lx � a�j when comparing the results
obtained using successively larger domain sizes. The
error in the resonance frequency decreases exponen-
tially with the domain size, consistent with the behavior
of the nonpropagating Bloch mode components of the
QNM. In all cases, we used a fixed calculation domain
height of Ly � 18a. Because of the PC bandgap in the
y direction, this was found to be large enough to not
influence the results to the quoted number of digits.
Having calculated the QNM, we next turn to the ques-

tion of normalization. Following [11], we start by writing
the norm of the QNM ~fμ as

hh~fμj~fμii �
1
2

Z
V
ϵr�r�~fμ�r� · ~fμ�r�

�
�
c
~ωμ

�
2
�∇ × ~fμ�r�� · �∇ × ~fμ�r�� dr; (4)

where the integral is formally over the entire volume of
space (area in two dimensions), and we have used the
source-free Maxwell curl equation to express the inte-
grand in terms of ~fμ�r� only. For homogeneous surround-
ings, the integral in Eq. (4) can be regularized by a
complex coordinate transform [11]. When the QNM leaks
through a periodic waveguide this is not possible, and we
must devise a means of regularization that is compatible
with the Bloch form of the integrand. To this end, we split
the integration into different parts; one part correspond-
ing to the cavity, and one part for each waveguide. For
the cavity part, the integrand is well-behaved, and the
integral can easily be evaluated. For each semi-infinite
waveguide the procedure is identical, and we limit the
discussion to a single generic example waveguide. With-
out loss of generality, we may take this waveguide to
point in the x direction. The partition of the integral along
the waveguide is denoted x0 and is chosen sufficiently
large that for x > x0 the QNM in the waveguide is well
described by Eq. (2). With this assumption, we write
the integral over the waveguide as

Iwg � Ia�x0�
X∞
m�0

e2i~kμma; (5)

where

Ia�x0� �
1
2

Z
⊥

Z
x0�a

x0

ϵr�r�~fμ�r� · ~fμ�r�

�
�
c
~ωμ

�
2
�∇ × ~fμ�r�� · �∇ × ~fμ�r�� dxdr⊥; (6)

in which ⊥ denotes the dimension(s) perpendicular to
the x axis (area in three dimensions and line in two
dimensions). The sum in Eq. (5) is a geometric series
of the form

P
mb

m, which is known to be divergent for
jbj ≥ 1. This will be the case for any application of
Eq. (5), because the leaky nature of the QNMsmeans that
Imf~kμg < 0. Although the series is formally divergent, it is
possible to assign a finite value to the right-hand side of
Eq. (5) using Borel summation (for Refbg < 1) or Linde-
löf or Mittag-Leffler summation (for b ∈ Cn�1;∞�) [23], in
which case the sum evaluates to the same expression as
in the case of jbj < 1:

Iwg �
Ia

1 − e2i~kμa
: (7)

In effect, this procedure regularizes the integral in a way
similar to what is possible with a complex coordinate
transform in homogeneous media.

For the QNM in Fig. 1, we used a calculation domain
size of Lx � 18a and a partition between the cavity and
the waveguide at x0 � 8a to find that hh~fcj~fcii∕
~f2c�rc�a2 � 1.441 − 0.055i. In scaling the QNM to unity
in the cavity center rc with refractive index nc � 1,
the norm equals the generalized effective mode volume
(area in this case) that was defined in [8]. The corre-
sponding (real) effective mode area is Aeff∕a2 � 1.443.
For out-of-plane polarization, the two-dimensional
Purcell formula is

FP � 1

π2

�
λc
nc

�
2 Q
Aeff

; (8)

where λc � 2πc∕ωc. Inserting, we find FP � 65.
Last, as an additional example, we use the norm in

Eqs. (4) and (5) to study the influence of small material
changes. Using perturbation theory, the first-order
change in the resonance frequency due to a small change
in the permittivity distribution is given as

Δ ~ω�1�
c � −

~ωc

2hh~fcj~fcii

Z
V
Δϵr�r�~fc�r� · ~fc�r�dr; (9)

where Δϵ�r� is the position dependent change in permit-
tivity. Equation (9) is identical to the result for QNMs
leaking to homogeneous media [4]; it may be derived,
for example, using the Hellmann–Feynman theorem [25]
in an operator formulation of Maxwell’s equations similar
to [26] but with a non-Hermitian approach using the QNM
norm in Eq. (4). We consider perturbations to the
material system in which an additional low-permittivity
cylinder is inserted in the center of the cavity. As shown

Fig. 2. Change in resonance frequency with increasing calcu-
lation domain width Lx as defined in the inset. The red solid
curve shows the difference to a reference calculation with fixed
domain size Lmax � 18a, and the blue dashed curve shows the
difference between results using successively larger domain
sizes.
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in Fig. 3, the perturbation result of Eq. (9) agrees well
with full numerical FEM calculations even for relatively
large shifts of several linewidths.
In summary, we have described an approach for

numerical calculation of QNMs in cavities coupled to
waveguides. The approach relies on a nonlocal boundary
condition to correctly model the radiation condition for
light leaking through the waveguide. In addition, we have
shown how to normalize these QNMs by use of the theory
of divergent series. We expect this normalization to be
useful for modeling coupled cavity-waveguide systems
in terms of QNMs in ways similar to what has been done
for cavities in homogeneous media [1–6,8,11,13–15]. As
example applications, we have used the normalization
to calculate the Purcell factor and for perturbation theory
calculations to illustrate how it leads to the correct first-
order prediction of the resonance shift.

This work was supported by the Carlsberg Foundation
and the Danish Council for Independent Research (FTP
10-093651).
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Fig. 3. Perturbative change in the resonance frequency Δ ~ωc �
Δωc − iΔγc as a function of permittivity change Δϵr of a cylinder
in the center of the cavity as indicated in the inset. Red and
blue circles (left axis) show changes in resonance frequency
and decay rate, respectively, using full numerical calculations,
and dashed black lines show the first-order perturbation result
of Eq. (9). Gray shading (right axis) shows the error in the
perturbation.
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